Hong Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/614310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-performance ReS ₂ photodetectors enhanced by a ferroelectric field and strain field. RSC Advances, 2022, 12, 4939-4945.	3.6	8
2	HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Science Advances, 2022, 8, eabn1811.	10.3	50
3	Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains. Nature Communications, 2022, 13, .	12.8	77
4	End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & Interfaces, 2021, 13, 7766-7772.	8.0	12
5	Gateâ€Tunable Photodiodes Based on Mixedâ€Dimensional Te/MoTe ₂ Van der Waals Heterojunctions. Advanced Electronic Materials, 2021, 7, 2001066.	5.1	29
6	Interface engineering of ferroelectric-gated MoS2 phototransistor. Science China Information Sciences, 2021, 64, 1.	4.3	10
7	Polarization switching in nanoscale ferroelectrics. Ferroelectrics, 2021, 575, 103-116.	0.6	2
8	Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nature Communications, 2021, 12, 4030.	12.8	79
9	Ultrasensitive negative capacitance phototransistors. Nature Communications, 2020, 11, 101.	12.8	124
10	Highly Sensitive InSb Nanosheets Infrared Photodetector Passivated by Ferroelectric Polymer. Advanced Functional Materials, 2020, 30, 2006156.	14.9	41
11	A versatile photodetector assisted by photovoltaic and bolometric effects. Light: Science and Applications, 2020, 9, 160.	16.6	56
12	MoTe ₂ p–n Homojunctions Defined by Ferroelectric Polarization. Advanced Materials, 2020, 32, e1907937.	21.0	115
13	Two-dimensional series connected photovoltaic cells defined by ferroelectric domains. Applied Physics Letters, 2020, 116, .	3.3	10
14	Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nature Electronics, 2020, 3, 43-50.	26.0	167
15	Extremely Low Dark Current MoS ₂ Photodetector via 2D Halide Perovskite as the Electron Reservoir. Advanced Optical Materials, 2020, 8, 1901402.	7.3	55
16	Multifunctional MoS ₂ Transistors with Electrolyte Gel Gating. Small, 2020, 16, e2000420.	10.0	23
17	Ultrabroad-Spectrum Photodetectors: Multimechanism Synergistic Photodetectors with Ultrabroad Spectrum Response from 375 nm to 10 Âμm (Adv. Sci. 15/2019). Advanced Science, 2019, 6, 1970089.	11.2	2
18	Ferroelectric properties of gradient doped Y2O3:HfO2 thin films grown by pulsed laser deposition. Applied Physics Letters, 2019, 115, .	3.3	9

#	Article	IF	CITATIONS
19	A study on ionic gated MoS2 phototransistors. Science China Information Sciences, 2019, 62, 1.	4.3	8
20	A gate-free MoS ₂ phototransistor assisted by ferroelectrics. Journal of Semiconductors, 2019, 40, 092002.	3.7	10
21	Multimode Signal Processor Unit Based on the Ambipolar WSe ₂ –Cr Schottky Junction. ACS Applied Materials & Interfaces, 2019, 11, 38895-38901.	8.0	3
22	Ultrasensitive Hybrid MoS ₂ –ZnCdSe Quantum Dot Photodetectors with High Gain. ACS Applied Materials & Interfaces, 2019, 11, 23667-23672.	8.0	62
23	Largeâ€area high quality PtSe ₂ thin film with versatile polarity. InformaÄnÃ-Materiály, 2019, 1, 260-267.	17.3	54
24	Multimechanism Synergistic Photodetectors with Ultrabroad Spectrum Response from 375 nm to 10 Âμm. Advanced Science, 2019, 6, 1901050.	11.2	52
25	A Robust Artificial Synapse Based on Organic Ferroelectric Polymer. Advanced Electronic Materials, 2019, 5, 1800600.	5.1	129
26	Ferroelectric Synapses: A Robust Artificial Synapse Based on Organic Ferroelectric Polymer (Adv.) Tj ETQq0 0 0 rg	gBT/Overlo 5.1	ock 10 Tf 50 ·
27	Structural, electrical and magnetic properties of (110)-oriented BF-BZT-ST Films. Ceramics International, 2018, 44, 9053-9057.	4.8	2
28	Optoelectronics: Highâ€Performance Photovoltaic Detector Based on MoTe ₂ /MoS ₂ Van der Waals Heterostructure (Small 9/2018). Small, 2018, 14, 1870038.	10.0	7
29	Graphene Dirac point tuned by ferroelectric polarization field. Nanotechnology, 2018, 29, 134002.	2.6	15
30	Highâ€Performance Photovoltaic Detector Based on MoTe ₂ /MoS ₂ Van der Waals Heterostructure, Small, 2018, 14, 1703293.	10.0	205

80	Waals Heterostructure. Small, 2018, 14, 1703293.	10.0	200
31	The ambipolar evolution of a high-performance WSe ₂ transistor assisted by a ferroelectric polymer. Nanotechnology, 2018, 29, 105202.	2.6	20
32	A ferroelectric relaxor polymer-enhanced p-type WSe ₂ transistor. Nanoscale, 2018, 10, 1727-1734.	5.6	31
33	High-performance lead-free two-dimensional perovskite photo transistors assisted by ferroelectric dielectrics. Journal of Materials Chemistry C, 2018, 6, 12714-12720.	5.5	39
34	Ultrahigh photoresponsivity MoS ₂ photodetector with tunable photocurrent generation mechanism. Nanotechnology, 2018, 29, 485204.	2.6	35
35	Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe ₂ channels. 2D Materials, 2017, 4, 025036.	4.4	85
36	Interfacial memristors in Al–LaNiO ₃ heterostructures. Physical Chemistry Chemical Physics, 2017, 19, 16960-16968.	2.8	6

#	Article	IF	CITATIONS
37	Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating. Npj 2D Materials and Applications, 2017, 1, .	7.9	77
38	Electrical characterization of MoS2 field-effect transistors with different dielectric polymer gate. AIP Advances, 2017, 7, .	1.3	15
39	Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors. Scientific Reports, 2016, 5, 18297.	3.3	30
40	Ferroelectric polymer tuned two dimensional layered MoTe ₂ photodetector. RSC Advances, 2016, 6, 87416-87421.	3.6	51
41	Highly sensitive visible to infrared MoTe ₂ photodetectors enhanced by the photogating effect. Nanotechnology, 2016, 27, 445201.	2.6	188
42	Visible to short wavelength infrared In ₂ Se ₃ -nanoflake photodetector gated by a ferroelectric polymer. Nanotechnology, 2016, 27, 364002.	2.6	63
43	Optoelectronic Properties of Few-Layer MoS ₂ FET Gated by Ferroelectric Relaxor Polymer. ACS Applied Materials & Interfaces, 2016, 8, 32083-32088.	8.0	76
44	Tunnel electroresistance through organic ferroelectrics. Nature Communications, 2016, 7, 11502.	12.8	104
45	Flexible graphene field effect transistor with ferroelectric polymer gate. Optical and Quantum Electronics, 2016, 48, 1.	3.3	21
46	Photodetectors: Ultrasensitive and Broadband MoS ₂ Photodetector Driven by Ferroelectrics (Adv. Mater. 42/2015). Advanced Materials, 2015, 27, 6538-6538.	21.0	8
47	Ultrasensitive and Broadband MoS ₂ Photodetector Driven by Ferroelectrics. Advanced Materials, 2015, 27, 6575-6581.	21.0	722
48	Transition of the polarization switching from extrinsic to intrinsic in the ultrathin polyvinylidene fluoride homopolymer films. Applied Physics Letters, 2014, 104, .	3.3	46
49	Evolution of multiple dielectric responses and relaxor-like behaviors in pure and nitrogen-ion-implanted (Ba, Sr)TiO3 thin films. Applied Physics Letters, 2014, 104, .	3.3	12
50	Resistance switching study of stoichiometric ZrO2 films for non-volatile memory application. Thin Solid Films, 2010, 518, 5652-5655.	1.8	12
51	Effect of oxygen to argon ratio on properties of (Ba,Sr)TiO3 thin films prepared on LaNiO3/Si substrates. Journal of Applied Physics, 2009, 105, 061637.	2.5	7
52	Recovery of visible-light photocatalytic efficiency of N-doped TiO2 nanoparticulate films. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193, 222-227.	3.9	18
53	Electron injection of SrTiO3â^•Si interfacial layer. Applied Physics Letters, 2008, 93, 102903.	3.3	0
54	First-principles calculation of N:H codoping effect on energy gap narrowing of TiO2. Applied Physics Letters, 2007, 90, 171909.	3.3	65

#	Article	IF	CITATIONS
55	Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation. Applied Surface Science, 2007, 253, 7024-7028.	6.1	83
56	Generation of nitrogen beams with very high N+/N2+ ratio using hollow cathode discharge. Vacuum, 2005, 77, 157-162.	3.5	10
57	Microstructure and electronic properties of pulsed-discharge-deposited amorphous carbon-nitride films. Diamond and Related Materials, 2005, 14, 1616-1622.	3.9	3