Shinji Makino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6143033/publications.pdf

Version: 2024-02-01

120 papers 9,853 citations

52 h-index 92 g-index

144 all docs 144 docs citations

144 times ranked 10915 citing authors

#	Article	IF	CITATIONS
1	A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology, 2011, 174, 11-22.	2.8	625
2	An Infectious cDNA Clone of SARS-CoV-2. Cell Host and Microbe, 2020, 27, 841-848.e3.	11.0	617
3	Severe acute respiratory syndrome coronavirus $nsp1$ protein suppresses host gene expression by promoting host mRNA degradation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12885-12890.	7.1	386
4	Severe Acute Respiratory Syndrome Coronavirus nsp1 Suppresses Host Gene Expression, Including That of Type I Interferon, in Infected Cells. Journal of Virology, 2008, 82, 4471-4479.	3.4	384
5	Molecular cloning and sequencing of a human hepatitis delta (Î) virus RNA. Nature, 1987, 329, 343-346.	27.8	358
6	A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nature Structural and Molecular Biology, 2009, 16, 1134-1140.	8.2	332
7	SARS Coronavirus nsp1 Protein Induces Template-Dependent Endonucleolytic Cleavage of mRNAs: Viral mRNAs Are Resistant to nsp1-Induced RNA Cleavage. PLoS Pathogens, 2011, 7, e1002433.	4.7	308
8	The Pathogenesis of Rift Valley Fever. Viruses, 2011, 3, 493-519.	3.3	282
9	Severe Acute Respiratory Syndrome Coronavirus Infection of Mice Transgenic for the Human Angiotensin-Converting Enzyme 2 Virus Receptor. Journal of Virology, 2007, 81, 1162-1173.	3.4	222
10	Cyclosporin A inhibits the replication of diverse coronaviruses. Journal of General Virology, 2011, 92, 2542-2548.	2.9	215
11	Characterization of the Coronavirus M Protein and Nucleocapsid Interaction in Infected Cells. Journal of Virology, 2000, 74, 8127-8134.	3.4	213
12	Rescue of Infectious Rift Valley Fever Virus Entirely from cDNA, Analysis of Virus Lacking the NSs Gene, and Expression of a Foreign Gene. Journal of Virology, 2006, 80, 2933-2940.	3.4	210
13	Rift Valley Fever Virus NSs Protein Promotes Post-Transcriptional Downregulation of Protein Kinase PKR and Inhibits eIF2α Phosphorylation. PLoS Pathogens, 2009, 5, e1000287.	4.7	195
14	A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. Nature Communications, 2020, 11, 5214.	12.8	179
15	Severe Acute Respiratory Syndrome Coronavirus Protein nsp1 Is a Novel Eukaryotic Translation Inhibitor That Represses Multiple Steps of Translation Initiation. Journal of Virology, 2012, 86, 13598-13608.	3.4	176
16	Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus Research, 2015, 202, 89-100.	2.2	173
17	NSm Protein of Rift Valley Fever Virus Suppresses Virus-Induced Apoptosis. Journal of Virology, 2007, 81, 13335-13345.	3.4	160
18	SARS coronavirus accessory proteins. Virus Research, 2008, 133, 113-121.	2.2	160

#	Article	IF	CITATIONS
19	Exogenous ACE2 Expression Allows Refractory Cell Lines To Support Severe Acute Respiratory Syndrome Coronavirus Replication. Journal of Virology, 2005, 79, 3846-3850.	3.4	143
20	Severe Acute Respiratory Syndrome and the Innate Immune Responses: Modulation of Effector Cell Function without Productive Infection. Journal of Immunology, 2005, 174, 7977-7985.	0.8	141
21	Middle East Respiratory Syndrome Coronavirus nsp1 Inhibits Host Gene Expression by Selectively Targeting mRNAs Transcribed in the Nucleus while Sparing mRNAs of Cytoplasmic Origin. Journal of Virology, 2015, 89, 10970-10981.	3.4	136
22	Nucleocapsid-Independent Specific Viral RNA Packaging via Viral Envelope Protein and Viral RNA Signal. Journal of Virology, 2003, 77, 2922-2927.	3.4	130
23	Analysis of cis-Acting Sequences Essential for Coronavirus Defective Interfering RNA Replication. Virology, 1993, 197, 53-63.	2.4	126
24	Severe Acute Respiratory Syndrome Coronavirus 3a Protein Is a Viral Structural Protein. Journal of Virology, 2005, 79, 3182-3186.	3.4	123
25	Rift Valley fever vaccines. Vaccine, 2009, 27, D69-D72.	3.8	116
26	Primary structure and translation of a defective interfering rna of murine coronavirus. Virology, 1988, 166, 550-560.	2.4	114
27	Induction of Apoptosis in Murine Coronavirus-Infected Cultured Cells and Demonstration of E Protein as an Apoptosis Inducer. Journal of Virology, 1999, 73, 7853-7859.	3.4	110
28	Murine Coronavirus Replication-Induced p38 Mitogen-Activated Protein Kinase Activation Promotes Interleukin-6 Production and Virus Replication in Cultured Cells. Journal of Virology, 2002, 76, 5937-5948.	3.4	106
29	Analysis of genomic and intracellular viral RNAs of small plaque mutants of mouse hepatitis virus, JHM strain. Virology, 1984, 139, 138-151.	2.4	104
30	Defective interfering particles of mouse hepatitis virus. Virology, 1984, 133, 9-17.	2.4	98
31	Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication. Journal of Virology, 2018, 92, .	3.4	97
32	Rift Valley Fever Virus Nonstructural Protein NSs Promotes Viral RNA Replication and Transcription in a Minigenome System. Journal of Virology, 2005, 79, 5606-5615.	3.4	95
33	NSm and 78-Kilodalton Proteins of Rift Valley Fever Virus Are Nonessential for Viral Replication in Cell Culture. Journal of Virology, 2006, 80, 8274-8278.	3.4	90
34	Murine Coronavirus Replication Induces Cell Cycle Arrest in G 0 \mid G 1 Phase. Journal of Virology, 2004, 78, 5658-5669.	3.4	89
35	Severe Acute Respiratory Syndrome Coronavirus 7a Accessory Protein Is a Viral Structural Protein. Journal of Virology, 2006, 80, 7287-7294.	3.4	86
36	Interplay between coronavirus, a cytoplasmic RNA virus, and nonsense-mediated mRNA decay pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10157-E10166.	7.1	86

#	Article	IF	Citations
37	Cooperation of an RNA Packaging Signal and a Viral Envelope Protein in Coronavirus RNA Packaging. Journal of Virology, 2001, 75, 9059-9067.	3.4	84
38	Murine Coronavirus Nonstructural Protein p28 Arrests Cell Cycle in G 0 $\!\!\!/\!\!\!/$ G 1 Phase. Journal of Virology, 2004, 78, 10410-10419.	3.4	83
39	Defective-interfering particles of murine coronavirus: Mechanism of synthesis of defective viral RNAs. Virology, 1988, 163, 104-111.	2.4	79
40	Multiple recombination sites at the 5′-end of murine coronavirus RNA. Virology, 1987, 156, 331-341.	2.4	77
41	Rift Valley Fever Virus NSs mRNA Is Transcribed from an Incoming Anti-Viral-Sense S RNA Segment. Journal of Virology, 2005, 79, 12106-12111.	3.4	77
42	Suppression of Host Gene Expression by nsp1 Proteins of Group 2 Bat Coronaviruses. Journal of Virology, 2009, 83, 5282-5288.	3.4	76
43	Alphacoronavirus Transmissible Gastroenteritis Virus nsp1 Protein Suppresses Protein Translation in Mammalian Cells and in Cell-Free HeLa Cell Extracts but Not in Rabbit Reticulocyte Lysate. Journal of Virology, 2011, 85, 638-643.	3.4	73
44	Evolution of the 5′-end of genomic rna of murine coronaviruses during passages in vitro. Virology, 1989, 169, 227-232.	2.4	72
45	Release of Coronavirus E Protein in Membrane Vesicles from Virus-Infected Cells and E Protein-Expressing Cells. Virology, 1999, 263, 265-272.	2.4	72
46	Characterization of Synthetic Chikungunya Viruses Based on the Consensus Sequence of Recent E1-226V Isolates. PLoS ONE, 2013, 8, e71047.	2.5	70
47	Membrane Topology of Coronavirus E Protein. Virology, 2001, 281, 163-169.	2.4	68
48	Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. Vaccine, 2008, 26, 797-808.	3.8	68
49	Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus. Virology, 1989, 173, 683-691.	2.4	66
50	Dual Functions of Rift Valley Fever Virus NSs Protein: Inhibition of Host mRNA Transcription and Postâ€transcriptional Downregulation of Protein Kinase PKR. Annals of the New York Academy of Sciences, 2009, 1171, E75-85.	3.8	65
51	Mechanisms of Coronavirus Nsp1-Mediated Control of Host and Viral Gene Expression. Cells, 2021, 10, 300.	4.1	60
52	The contribution of the cytoplasmic retrieval signal of severe acute respiratory syndrome coronavirus to intracellular accumulation of S proteins and incorporation of S protein into virus-like particles. Journal of General Virology, 2016, 97, 1853-1864.	2.9	58
53	Characterization of N protein self-association in coronavirus ribonucleoprotein complexes. Virus Research, 2003, 98, 131-140.	2.2	56
54	Severe Acute Respiratory Syndrome Coronavirus Accessory Protein 6 Is a Virion-Associated Protein and Is Released from 6 Protein-Expressing Cells. Journal of Virology, 2007, 81, 5423-5426.	3.4	53

#	Article	IF	CITATIONS
55	Safety and immunogenicity of recombinant Rift Valley fever MP-12 vaccine candidates in sheep. Vaccine, 2013, 31, 559-565.	3.8	53
56	Differential Virological and Immunological Outcome of Severe Acute Respiratory Syndrome Coronavirus Infection in Susceptible and Resistant Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2. Journal of Virology, 2009, 83, 5451-5465.	3.4	52
57	The C-Terminal Region of Rift Valley Fever Virus NSm Protein Targets the Protein to the Mitochondrial Outer Membrane and Exerts Antiapoptotic Function. Journal of Virology, 2013, 87, 676-682.	3.4	49
58	Generation and Selection of Coronavirus Defective Interfering RNA with Large Open Reading Frame by RNA Recombination and Possible Editing. Virology, 1993, 194, 244-253.	2.4	48
59	Characterization of Rift Valley Fever Virus Transcriptional Terminations. Journal of Virology, 2007, 81, 8421-8438.	3.4	48
60	Severe Acute Respiratory Syndrome Coronavirus 3a Protein Is Released in Membranous Structures from 3a Protein-Expressing Cells and Infected Cells. Journal of Virology, 2006, 80, 210-217.	3.4	46
61	Interplay between viruses and host mRNA degradation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 732-741.	1.9	46
62	RNase L-Independent Specific 28S rRNA Cleavage in Murine Coronavirus-Infected Cells. Journal of Virology, 2000, 74, 8793-8802.	3.4	44
63	Mechanism of tripartite RNA genome packaging in Rift Valley fever virus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 804-809.	7.1	44
64	Characterization of Small Plaque Mutants of Mouse Hepatitis Virus, JHM Strain. Microbiology and Immunology, 1983, 27, 445-454.	1.4	41
65	Rapid Accumulation of Virulent Rift Valley Fever Virus in Mice from an Attenuated Virus Carrying a Single Nucleotide Substitution in the M RNA. PLoS ONE, 2010, 5, e9986.	2.5	39
66	The Endonucleolytic RNA Cleavage Function of nsp1 of Middle East Respiratory Syndrome Coronavirus Promotes the Production of Infectious Virus Particles in Specific Human Cell Lines. Journal of Virology, 2018, 92, .	3.4	39
67	Persistent Infection with Mouse Hepatitis Virus, JHM Strain in DBT Cell Culture. Advances in Experimental Medicine and Biology, 1981, 142, 301-308.	1.6	38
68	Parsing the role of NSP1 in SARS-CoV-2 infection. Cell Reports, 2022, 39, 110954.	6.4	37
69	Coronavirus Transcription Mediated by Sequences Flanking the Transcription Consensus Sequence. Virology, 1996, 217, 311-322.	2.4	36
70	Murine Coronavirus-Induced Apoptosis in 17Cl-1 Cells Involves a Mitochondria-Mediated Pathway and Its Downstream Caspase-8 Activation and Bid Cleavage. Virology, 2002, 302, 321-332.	2.4	35
71	Immunogenicity of a recombinant Rift Valley fever MP-12-NSm deletion vaccine candidate in calves. Vaccine, 2013, 31, 4988-4994.	3.8	34
72	Rift Valley Fever Virus L Protein Forms a Biologically Active Oligomer. Journal of Virology, 2009, 83, 12779-12789.	3.4	32

#	Article	IF	CITATIONS
73	Genetic diversity and recombination of enterovirus G strains in Japanese pigs: High prevalence of strains carrying a papain-like cysteine protease sequence in the enterovirus G population. PLoS ONE, 2018, 13, e0190819.	2.5	30
74	Interplay between the Virus and Host in Rift Valley Fever Pathogenesis. Journal of Innate Immunity, 2015, 7, 450-458.	3.8	27
75	RNA Recombination of Coronavirus. Advances in Experimental Medicine and Biology, 1987, 218, 99-107.	1.6	27
76	The Nucleocapsid Protein of Rift Valley Fever Virus Is a Potent Human CD8+ T Cell Antigen and Elicits Memory Responses. PLoS ONE, 2013, 8, e59210.	2.5	27
77	Neuropathogenicity of mouse hepatitis virus JHM isolates differing in hemagglutinin-esterase protein expression. Journal of NeuroVirology, 1995, 1, 330-339.	2.1	25
78	cis-acting genomic elements and trans-acting proteins involved in the assembly of RNA viruses. Seminars in Virology, 1994, 5, 39-49.	3.9	23
79	Characterizations of Coronaviruscis-Acting RNA Elements and the Transcription Step Affecting Its Transcription Efficiency. Virology, 1998, 243, 198-207.	2.4	22
80	Importance of the Positive-Strand RNA Secondary Structure of a Murine Coronavirus Defective Interfering RNA Internal Replication Signal in Positive-Strand RNA Synthesis. Journal of Virology, 1998, 72, 7926-7933.	3.4	21
81	Development of a Novel, Single-Cycle Replicable Rift Valley Fever Vaccine. PLoS Neglected Tropical Diseases, 2014, 8, e2746.	3.0	19
82	Protein Phosphatase-1 regulates Rift Valley fever virus replication. Antiviral Research, 2016, 127, 79-89.	4.1	19
83	Molecular characterization of feline paramyxovirus in Japanese cat populations. Archives of Virology, 2020, 165, 413-418.	2.1	19
84	Coronavirus Transcription Early in Infection. Journal of Virology, 1998, 72, 8517-8524.	3.4	19
85	Roles of the Coding and Noncoding Regions of Rift Valley Fever Virus RNA Genome Segments in Viral RNA Packaging. Journal of Virology, 2012, 86, 4034-4039.	3.4	18
86	A Murine Coronavirus MHV-S Isolate from Persistently infected Cells Has a Leader and Two Consensus Sequences between the M and N Genes. Virology, 1994, 198, 355-359.	2.4	16
87	Nascent Synthesis of Leader Sequence-Containing Subgenomic mRNAs in Coronavirus Genome-Length Replicative Intermediate RNA. Virology, 2000, 275, 238-243.	2.4	16
88	Two palmitylated cysteine residues of the severe acute respiratory syndrome coronavirus spike (S) protein are critical for S incorporation into virus-like particles, but not for M–S co-localization. Journal of General Virology, 2012, 93, 823-828.	2.9	15
89	A strand-specific real-time quantitative RT-PCR assay for distinguishing the genomic and antigenomic RNAs of Rift Valley fever phlebovirus. Journal of Virological Methods, 2019, 272, 113701.	2.1	15
90	A novel defective recombinant porcine enterovirus G virus carrying a porcine torovirus papain-like cysteine protease gene and a putative anti-apoptosis gene in place of viral structural protein genes. Infection, Genetics and Evolution, 2019, 75, 103975.	2.3	14

#	Article	IF	Citations
91	Characterization of Nucleocapsid-M Protein Interaction in Murine Coronavirus. Advances in Experimental Medicine and Biology, 2001, 494, 577-582.	1.6	12
92	Mechanistic Insight into the Host Transcription Inhibition Function of Rift Valley Fever Virus NSs and Its Importance in Virulence. PLoS Neglected Tropical Diseases, 2016, 10, e0005047.	3.0	11
93	Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates. Virus Research, 2016, 216, 55-65.	2.2	11
94	Coronavirus Accessory Proteins. , 2014, , 235-244.		10
95	Metagenomic identification and sequence analysis of a Teschovirus A-related virus in porcine feces in Japan, 2014–2016. Infection, Genetics and Evolution, 2018, 66, 210-216.	2.3	10
96	Rift Valley Fever. , 2011, , 462-465.		9
97	Enhanced Accumulation of Coronavirus Defective Interfering RNA from Expressed Negative-Strand Transcripts by Coexpressed Positive-Strand RNA Transcripts. Virology, 2001, 287, 286-300.	2.4	8
98	A single-cycle replicable Rift Valley fever phlebovirus vaccine carrying a mutated NSs confers full protection from lethal challenge in mice. Scientific Reports, 2018, 8, 17097.	3.3	8
99	Characterization of the Molecular Interactions That Govern the Packaging of Viral RNA Segments into Rift Valley Fever Phlebovirus Particles. Journal of Virology, 2021, 95, e0042921.	3.4	8
100	Generation of a Single-Cycle Replicable Rift Valley Fever Vaccine. Methods in Molecular Biology, 2016, 1403, 187-206.	0.9	7
101	A new comprehensive method for detection of livestock-related pathogenic viruses using a target enrichment system. Biochemical and Biophysical Research Communications, 2018, 495, 1871-1877.	2.1	7
102	Reverse genetics approaches for the development of bunyavirus vaccines. Current Opinion in Virology, 2020, 44, 16-25.	5.4	7
103	Rift Valley fever virus 78kDa envelope protein attenuates virus replication in macrophage-derived cell lines and viral virulence in mice. PLoS Neglected Tropical Diseases, 2021, 15, e0009785.	3.0	7
104	Production and characterization of monoclonal antibodies to mouse hepatitis virus, MHV-NuU Nihon Juigaku Zasshi, 1985, 47, 423-433.	0.3	5
105	Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs. Journal of Veterinary Science, 2018, 19, 350.	1.3	5
106	Importance of coronavirus negative-strand genomic RNA synthesis prior to subgenomic RNA transcription. Virus Research, 1998, 57, 35-42.	2.2	4
107	Studies of Coronavirus DI RNA Replication Using In Vitro Constructed DI cDNA Clones. Advances in Experimental Medicine and Biology, 1990, 276, 341-347.	1.6	4
108	Whole genome analysis of a novel picornavirus related to the Enterovirus/Sapelovirus supergroup from porcine feces in Japan. Virus Research, 2018, 257, 68-73.	2.2	3

#	Article	IF	CITATIONS
109	Specific Cleavage of 28S Ribosomal RNA in Murine Coronavirus-Infected Cells. Advances in Experimental Medicine and Biology, 2001, 494, 621-626.	1.6	3
110	Coronaviruses and Arteriviruses., 0,, 373-387.		2
111	Defective Interfering Particles of Coronavirus. Advances in Experimental Medicine and Biology, 1987, 218, 187-195.	1.6	2
112	Murine Coronavirus 5′-End Genomic RNA Sequence Reveals Mechanism of Leader-Primed Transcription. Advances in Experimental Medicine and Biology, 1987, 218, 73-81.	1.6	2
113	Analysis of Coronavirus Transcription Regulation. Advances in Experimental Medicine and Biology, 1995, 380, 473-478.	1.6	2
114	Neuropathogenicity of Mutant Strains of Mouse Hepatitis Virus, 1a and 2c, from DBT Cells Persistently Infected with JHM Strain. Advances in Experimental Medicine and Biology, 1987, 218, 439-440.	1.6	1
115	Introduction to Virology special issue featuring nidovirus research. Virology, 2018, 517, 1-2.	2.4	0
116	Novel herpesvirus discovered in walrus liver. Virus Genes, 2021, 57, 228-232.	1.6	0
117	African pygmy hedgehog adenovirus: Virus replication, virus-induced cytopathogenesis and activation of mitogen-activated protein kinase signaling pathways in infected MDCK cells. Research in Veterinary Science, 2021, 139, 152-158.	1.9	O
118	Site-Specific Sequence Repair of Coronavirus Defective Interfering RNA by RNA Recombination and Edited RNA. Advances in Experimental Medicine and Biology, 1994, 342, 137-142.	1.6	0
119	Analysis of the CIS-Acting Elements of Coronavirus Transcription. Advances in Experimental Medicine and Biology, 1994, 342, 91-97.	1.6	0
120	Expression of Murine Coronavirus Genes 1 and 7 is Sufficient for Viral RNA Synthesis. Advances in Experimental Medicine and Biology, 1995, 380, 479-484.	1.6	0