
Jung-whan Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6142017/publications.pdf Version: 2024-02-01

LUNC-WHAN KIM

#	Article	IF	CITATIONS
1	Heme Sequestration Effectively Suppresses the Development and Progression of Both Lung Adenocarcinoma and Squamous Cell Carcinoma. Molecular Cancer Research, 2022, 20, 139-149.	3.4	5
2	Oxidative Stress and the Intersection of Oncogenic Signaling and Metabolism in Squamous Cell Carcinomas. Cells, 2021, 10, 606.	4.1	3
3	Epidemiological characteristics of a COVID-19 outbreak caused by religious activities in Daegu, Korea. Epidemiology and Health, 2021, 43, e2021024.	1.9	10
4	Stromal Hedgehog pathway activation by IHH suppresses lung adenocarcinoma growth and metastasis by limiting reactive oxygen species. Oncogene, 2020, 39, 3258-3275.	5.9	16
5	p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas. Cell Reports, 2019, 28, 1860-1878.e9.	6.4	68
6	Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nature Communications, 2019, 10, 2824.	12.8	93
7	Pyruvate Dehydrogenase Kinase Is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype. Frontiers in Immunology, 2019, 10, 944.	4.8	58
8	Monitoring Early Breast Cancer Response to Neoadjuvant Therapy Using Hâ€Scan Ultrasound Imaging: Preliminary Preclinical Results. Journal of Ultrasound in Medicine, 2019, 38, 1259-1268.	1.7	44
9	Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging. Ultrasound in Medicine and Biology, 2018, 44, 267-277.	1.5	47
10	Targeting Hypoxia-Inducible Factor-1α/Pyruvate Dehydrogenase Kinase 1 Axis by Dichloroacetate Suppresses Bleomycin-induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 216-231.	2.9	103
11	Regulation of Acetate Utilization by Monocarboxylate Transporter 1 (MCT1) in Hepatocellular Carcinoma (HCC). Oncology Research, 2018, 26, 71-81.	1.5	25
12	Glucose Transporter 1 Gene Variants Predict the Prognosis of Patients with Early-Stage Non-small Cell Lung Cancer. Annals of Surgical Oncology, 2018, 25, 3396-3403.	1.5	8
13	Convergence of Cancer Metabolism and Immunity: an Overview. Biomolecules and Therapeutics, 2018, 26, 4-9.	2.4	24
14	A New Perspective on the Heterogeneity of Cancer Glycolysis. Biomolecules and Therapeutics, 2018, 26, 10-18.	2.4	28
15	18F-Fluorodeoxyglucose uptake on positron emission tomography/computed tomography is associated with metastasis and epithelial-mesenchymal transition in hepatocellular carcinoma. Clinical and Experimental Metastasis, 2017, 34, 251-260.	3.3	25
16	The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nature Communications, 2017, 8, 15503.	12.8	116
17	Lung squamous cell carcinoma exhibits a targetable glucose dependency unique among non-small cell lung cancers. Molecular and Cellular Oncology, 2017, 4, e1364211.	0.7	8
18	MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell, 2017, 32, 71-87.e7.	16.8	373

Jung-whan Kim

#	Article	IF	CITATIONS
19	Monitoring early tumor response to vascular targeted therapy using super-resolution ultrasound imaging. , 2017, , .		7
20	Warburg Effect. , 2017, , 4845-4849.		0
21	NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nature Communications, 2016, 7, 13593.	12.8	125
22	HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nature Communications, 2016, 7, 11635.	12.8	233
23	Regulation of obesity and insulin resistance by hypoxia-inducible factors. Hypoxia (Auckland, N Z), 2014, 2, 171.	1.9	36
24	Regulation of Wound Healing and Fibrosis by Hypoxia and Hypoxia-Inducible Factor-1. Molecules and Cells, 2014, 37, 637-643.	2.6	164
25	Suppression of angiogenic response in local vein wall is associated with reduced thrombus resolution. Thrombosis Research, 2014, 134, 682-685.	1.7	12
26	Increased Adipocyte O2 Consumption Triggers HIF-1α, Causing Inflammation and Insulin Resistance in Obesity. Cell, 2014, 157, 1339-1352.	28.9	443
27	GATA3 suppresses metastasis and modulates the tumour microenvironment by regulatingÂmicroRNA-29b expression. Nature Cell Biology, 2013, 15, 201-213.	10.3	322
28	HIF isoforms in the skin differentially regulate systemic arterial pressure. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17570-17575.	7.1	57
29	Loss of Fibroblast HIF-1α Accelerates Tumorigenesis. Cancer Research, 2012, 72, 3187-3195.	0.9	55
30	Warburg Effect. , 2011, , 3941-3945.		0
31	Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes and Development, 2010, 24, 491-501.	5.9	518
32	You Don't Need a PHD to Grow a Tumor. Developmental Cell, 2009, 16, 781-782.	7.0	5
33	The interplay between MYC and HIF in cancer. Nature Reviews Cancer, 2008, 8, 51-56.	28.4	535
34	GATA-3 and the regulation of the mammary luminal cell fate. Current Opinion in Cell Biology, 2008, 20, 164-170.	5.4	138
35	Hypoxia-Inducible Factor 1 and Dysregulated c-Myc Cooperatively Induce Vascular Endothelial Growth Factor and Metabolic Switches Hexokinase 2 and Pyruvate Dehydrogenase Kinase 1. Molecular and Cellular Biology, 2007, 27, 7381-7393.	2.3	540
36	HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration in Hypoxic Cells. Cell, 2007, 129, 111-122.	28.9	1,068

Jung-whan Kim

#	Article	IF	CITATIONS
37	Effects of hypoxia on tumor metabolism. Cancer and Metastasis Reviews, 2007, 26, 291-298.	5.9	123
38	HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 2006, 3, 177-185.	16.2	3,112
39	Cancer's Molecular Sweet Tooth and the Warburg Effect. Cancer Research, 2006, 66, 8927-8930.	0.9	1,086
40	Activation of Transferrin Receptor 1 by c-Myc Enhances Cellular Proliferation and Tumorigenesis. Molecular and Cellular Biology, 2006, 26, 2373-2386.	2.3	210
41	Multifaceted roles of glycolytic enzymes. Trends in Biochemical Sciences, 2005, 30, 142-150.	7.5	570
42	Myc Stimulates Nuclearly Encoded Mitochondrial Genes and Mitochondrial Biogenesis. Molecular and Cellular Biology, 2005, 25, 6225-6234.	2.3	527
43	IFN-γ/IRF-1-induced p27kip1down-regulates telomerase activity and human telomerase reverse transcriptase expression in human cervical cancer. FEBS Letters, 2005, 579, 1027-1033.	2.8	41
44	Corrigendum to: "IFN-γ/IRF-1-induced p27kip1down-regulates telomerase activity and human telomerase reverse transcriptase expression in human cervical cancer (FEBS 29236)―[FEBS Letters 579 (2005) 1027-1033]. FEBS Letters, 2005, 579, 6288-6288.	2.8	0
45	Oncogenic alterations of metabolism and the Warburg effect. Drug Discovery Today Disease Mechanisms, 2005, 2, 233-238.	0.8	20
46	Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart. Genome Biology, 2005, 6, R107.	8.8	139
47	Evaluation of Myc E-Box Phylogenetic Footprints in Glycolytic Genes by Chromatin Immunoprecipitation Assays. Molecular and Cellular Biology, 2004, 24, 5923-5936.	2.3	312
48	Rapid apoptosis in the pulmonary vasculature distinguishes non-metastatic from metastatic melanoma cells. Cancer Letters, 2004, 213, 203-212.	7.2	42
49	Interferon regulatory factor-1 (IRF-1) is a mediator for interferon-Î ³ induced attenuation of telomerase activity and human telomerase reverse transcriptase (hTERT) expression. Oncogene, 2003, 22, 381-391.	5.9	51
50	Aberrant expression of Smad4 results in resistance against the growthâ€inhibitory effect of transforming growth factorâ€i² in the SiHa human cervical carcinoma cell line. International Journal of Cancer, 2001, 94, 500-507.	5.1	44
51	Overexpression of the thymosin \hat{l}^2 -10 gene in human ovarian cancer cells disrupts F-actin stress fiber and leads to apoptosis. Oncogene, 2001, 20, 6700-6706.	5.9	51