
## William I Sivitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6141963/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Membrane potentialâ€dependent regulation of mitochondrial complex II by oxaloacetate in<br>interscapular brown adipose tissue. FASEB BioAdvances, 2022, 4, 197-210.                                                                                                           | 1.3 | 4         |
| 2  | A Novel Triphenylphosphonium Carrier to Target Mitochondria without Uncoupling Oxidative<br>Phosphorylation. Journal of Medicinal Chemistry, 2021, 64, 662-676.                                                                                                               | 2.9 | 50        |
| 3  | Effect of mitoquinone on liver metabolism and steatosis in obese and diabetic rats. Pharmacology<br>Research and Perspectives, 2021, 9, e00701.                                                                                                                               | 1.1 | 7         |
| 4  | Perilipin 2 downregulation in $\hat{l}^2$ cells impairs insulin secretion under nutritional stress and damages mitochondria. JCl Insight, 2021, 6, .                                                                                                                          | 2.3 | 10        |
| 5  | Insulin and IGF-1 receptors regulate complex l–dependent mitochondrial bioenergetics and supercomplexes via FoxOs in muscle. Journal of Clinical Investigation, 2021, 131, .                                                                                                  | 3.9 | 28        |
| 6  | Simultaneous Quantification of Mitochondrial ATP and Using ATP Methodology. Methods in Molecular Biology, 2021, 2276, 271-283.                                                                                                                                                | 0.4 | 0         |
| 7  | An Observational Study of the Equivalence of Age and Duration of Diabetes to Glycemic Control<br>Relative to the Risk of Complications in the Combined Cohorts of the DCCT/EDIC Study. Diabetes Care,<br>2020, 43, 2478-2484.                                                 | 4.3 | 19        |
| 8  | Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and<br>Critical for the Maintenance of Syntaxin 1a Levels in β-Cells. Diabetes, 2020, 69, 1178-1192.                                                                      | 0.3 | 20        |
| 9  | Optimization of Metformin in the GRADE Cohort: Effect on Glycemia and Body Weight. Diabetes Care, 2020, 43, 940-947.                                                                                                                                                          | 4.3 | 14        |
| 10 | Adipose Triglyceride Lipase is a Key Lipase for the Mobilization of Lipid Droplets in Human Beta Cells<br>and Critical for the Maintenance of Syntaxin1a Level in Beta Cells. Diabetes, 2020, , db190951.                                                                     | 0.3 | 0         |
| 11 | Effect of mitoquinone (Mito-Q) on neuropathic endpoints in an obese and type 2 diabetic rat model.<br>Free Radical Research, 2020, 54, 311-318.                                                                                                                               | 1.5 | 19        |
| 12 | Oxaloacetate Mediates Mitochondrial Metabolism and Function. Current Metabolomics and Systems Biology, 2020, 7, 11-23.                                                                                                                                                        | 0.6 | 5         |
| 13 | Modulation of complex IIâ€energized respiration in muscle, heart, and brown adipose mitochondria by oxaloacetate and complex I electron flow. FASEB Journal, 2019, 33, 11696-11705.                                                                                           | 0.2 | 15        |
| 14 | Risk Factors for Retinopathy in Type 1 Diabetes: The DCCT/EDIC Study. Diabetes Care, 2019, 42, 875-882.                                                                                                                                                                       | 4.3 | 114       |
| 15 | Association of Insulin Dose, Cardiometabolic Risk Factors, and Cardiovascular Disease in Type 1<br>Diabetes During 30 Years of Follow-up in the DCCT/EDIC Study. Diabetes Care, 2019, 42, 657-664.                                                                            | 4.3 | 32        |
| 16 | Response to Comment on Braffett et al. Association of Insulin Dose, Cardiometabolic Risk Factors, and<br>Cardiovascular Disease in Type 1 Diabetes During 30 Years of Follow-up in the DCCT/EDIC Study.<br>Diabetes Care 2019;42:657–664. Diabetes Care, 2019, 42, e137-e137. | 4.3 | 0         |
| 17 | Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II–driven respiration.<br>Journal of Biological Chemistry, 2018, 293, 19932-19941.                                                                                                                | 1.6 | 30        |
| 18 | Effect of a mitochondrialâ€ŧargeted coenzyme Q analog on pancreatic βâ€cell function and energetics in high fat fed obese mice. Pharmacology Research and Perspectives, 2018, 6, e00393.                                                                                      | 1.1 | 26        |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Metabolic effects of a mitochondrial-targeted coenzyme Q analog in high fat fed obese mice.<br>Pharmacology Research and Perspectives, 2017, 5, e00301.                                                                                                           | 1.1  | 22        |
| 20 | Regulation of ATP production: dependence on calcium concentration and respiratory state. American Journal of Physiology - Cell Physiology, 2017, 313, C146-C153.                                                                                                  | 2.1  | 57        |
| 21 | Techniques to Investigate Bioenergetics of Mitochondria. Neuromethods, 2017, , 67-94.                                                                                                                                                                             | 0.2  | 1         |
| 22 | Impact of Excessive Weight Gain on Cardiovascular Outcomes in Type 1 Diabetes: Results From the<br>Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications<br>(DCCT/EDIC) Study. Diabetes Care, 2017, 40, 1756-1762.    | 4.3  | 77        |
| 23 | Voltage-Dependent Regulation of Complex II Energized Mitochondrial Oxygen Flux. PLoS ONE, 2016, 11, e0154982.                                                                                                                                                     | 1.1  | 13        |
| 24 | Impaired utilization of membrane potential by complex II-energized mitochondria of obese, diabetic<br>mice assessed using ADP recycling methodology. American Journal of Physiology - Regulatory<br>Integrative and Comparative Physiology, 2016, 311, R756-R763. | 0.9  | 7         |
| 25 | Human iPS Cell-Derived Insulin Producing Cells Form Vascularized Organoids under the Kidney Capsules of Diabetic Mice. PLoS ONE, 2015, 10, e0116582.                                                                                                              | 1.1  | 48        |
| 26 | Evidence for metabolic aberrations in asymptomatic persons with type 2 diabetes after initiation of simvastatin therapy. Translational Research, 2015, 166, 176-187.                                                                                              | 2.2  | 4         |
| 27 | Simultaneous Quantification of Mitochondrial ATP and ROS Production. Methods in Molecular<br>Biology, 2015, 1264, 149-159.                                                                                                                                        | 0.4  | 10        |
| 28 | Mitochondria and Oxidative Stress in Diabetes. Oxidative Stress in Applied Basic Research and Clinical Practice, 2014, , 63-92.                                                                                                                                   | 0.4  | 0         |
| 29 | Joiner et al. reply. Nature, 2014, 513, E3-E3.                                                                                                                                                                                                                    | 13.7 | 9         |
| 30 | Dietary fat, fatty acid saturation and mitochondrial bioenergetics. Journal of Bioenergetics and<br>Biomembranes, 2014, 46, 33-44.                                                                                                                                | 1.0  | 41        |
| 31 | A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic<br>Dysfunction in High-Fat–Fed Mice. Journal of Pharmacology and Experimental Therapeutics, 2014, 351,<br>699-708.                                                        | 1.3  | 39        |
| 32 | Mitochondrial Function in Diabetes: Novel Methodology and New Insight. Diabetes, 2013, 62, 1833-1842.                                                                                                                                                             | 0.3  | 29        |
| 33 | Reversibility of Fenofibrate Therapy–Induced Renal Function Impairment in ACCORD Type 2 Diabetic<br>Participants. Diabetes Care, 2012, 35, 1008-1014.                                                                                                             | 4.3  | 114       |
| 34 | Peroxisome Proliferator-Activated Receptor γ Decouples Fatty Acid Uptake from Lipid Inhibition of<br>Insulin Signaling in Skeletal Muscle. Molecular Endocrinology, 2012, 26, 977-988.                                                                            | 3.7  | 21        |
| 35 | CaMKII determines mitochondrial stress responses in heart. Nature, 2012, 491, 269-273.                                                                                                                                                                            | 13.7 | 340       |
| 36 | Bioenergetic Effects of Mitochondrial-Targeted Coenzyme Q Analogs in Endothelial Cells. Journal of<br>Pharmacology and Experimental Therapeutics, 2012, 342, 709-719.                                                                                             | 1.3  | 52        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Endothelial Cell and Platelet Bioenergetics: Effect of Glucose and Nutrient Composition. PLoS ONE, 2012, 7, e39430.                                                                                                             | 1.1 | 36        |
| 38 | Modifying a high saturated fat diet with omegaâ€3 (nâ€3) polyâ€unsaturated fat improves vascular<br>dysfunction and glucose intolerance. FASEB Journal, 2012, 26, 686.13.                                                       | 0.2 | 0         |
| 39 | Modifying a high fat diet with monoâ€and polyâ€unsaturated fats improves coronary dysfunction. FASEB<br>Journal, 2012, 26, 1055.7.                                                                                              | 0.2 | Ο         |
| 40 | Feeding Frequency and Appetite in Lean and Obese Prepubertal Children. Obesity, 2011, 19, 560-567.                                                                                                                              | 1.5 | 3         |
| 41 | Mitochondrial superoxide and coenzyme Q in insulin-deficient rats: increased electron leak. American<br>Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1616-R1624.                      | 0.9 | 14        |
| 42 | Superoxide production by mitochondria of insulin-sensitive tissues: mechanistic differences and effect of early diabetes. Metabolism: Clinical and Experimental, 2010, 59, 247-257.                                             | 1.5 | 21        |
| 43 | The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes:<br>retrospective epidemiological analysis of the ACCORD study. BMJ: British Medical Journal, 2010, 340,<br>b4909-b4909.             | 2.4 | 807       |
| 44 | Mitochondrial Dysfunction in Diabetes: From Molecular Mechanisms to Functional Significance and Therapeutic Opportunities. Antioxidants and Redox Signaling, 2010, 12, 537-577.                                                 | 2.5 | 600       |
| 45 | Superoxide and Respiratory Coupling in Mitochondria of Insulin-Deficient Diabetic Rats.<br>Endocrinology, 2009, 150, 46-55.                                                                                                     | 1.4 | 64        |
| 46 | Leptin Gene –2548C/A variants predict risperidone-associated weight gain in children and adolescents.<br>Psychiatric Genetics, 2009, 19, 320-327.                                                                               | 0.6 | 47        |
| 47 | Mitochondrial Targeted Coenzyme Q, Superoxide, and Fuel Selectivity in Endothelial Cells. PLoS ONE, 2009, 4, e4250.                                                                                                             | 1.1 | 18        |
| 48 | Endogenous Peroxisome Proliferator-Activated Receptor-Î <sup>3</sup> Augments Fatty Acid Uptake in Oxidative<br>Muscle. Endocrinology, 2008, 149, 5374-5383.                                                                    | 1.4 | 12        |
| 49 | Mitochondrial proton leak in obesity-resistant and obesity-prone mice. American Journal of<br>Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1773-R1780.                                           | 0.9 | 39        |
| 50 | Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic<br>syndrome in mice. Proceedings of the National Academy of Sciences of the United States of America,<br>2007, 104, 2366-2371. | 3.3 | 256       |
| 51 | Obesity impairs vascular relaxation in human subjects: hyperglycemia exaggerates adrenergic vasoconstriction. Journal of Diabetes and Its Complications, 2007, 21, 149-157.                                                     | 1.2 | 53        |
| 52 | Antecedent Hypoglycemia, Catecholamine Depletion, and Subsequent Sympathetic Neural Responses.<br>Endocrinology, 2006, 147, 2781-2788.                                                                                          | 1.4 | 35        |
| 53 | Reactive Oxygen and Targeted Antioxidant Administration in Endothelial Cell Mitochondria. Journal of Biological Chemistry, 2006, 281, 39766-39775.                                                                              | 1.6 | 106       |
| 54 | Respiratory uncoupling by UCP1 and UCP2 and superoxide generation in endothelial cell<br>mitochondria. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E71-E79.                                       | 1.8 | 45        |

| #  | Article                                                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Scintigraphic Detection of Benign Struma Ovarii in a Hyperthyroid Patient. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 3771-3772.                                                                                                                                                                                        | 1.8 | 14        |
| 56 | Glycation and Carboxymethyllysine Levels in Skin Collagen Predict the Risk of Future 10-Year<br>Progression of Diabetic Retinopathy and Nephropathy in the Diabetes Control and Complications Trial<br>and Epidemiology of Diabetes Interventions and Complications Participants With Type 1 Diabetes.<br>Diabetes, 2005, 54, 3103-3111. | 0.3 | 384       |
| 57 | Cyclic Changes in Glycemia Assessed by Continuous Glucose Monitoring System During Multiple<br>Complete Menstrual Cycles in Women with Type 1 Diabetes. Diabetes Technology and Therapeutics,<br>2004, 6, 473-480.                                                                                                                       | 2.4 | 32        |
| 58 | Free Fatty Acid-induced β-Cell Defects Are Dependent on Uncoupling Protein 2 Expression. Journal of<br>Biological Chemistry, 2004, 279, 51049-51056.                                                                                                                                                                                     | 1.6 | 179       |
| 59 | Adiponectin and C-reactive protein in obesity, type 2 diabetes, and monodrug therapy. Metabolism:<br>Clinical and Experimental, 2004, 53, 1454-1461.                                                                                                                                                                                     | 1.5 | 62        |
| 60 | Understanding insulin resistance. Postgraduate Medicine, 2004, 116, 41-48.                                                                                                                                                                                                                                                               | 0.9 | 4         |
| 61 | Leptin administration to normal rats does not alter catecholamine responsiveness to insulin-induced hypoglycemia. Metabolism: Clinical and Experimental, 2003, 52, 1484-1490.                                                                                                                                                            | 1.5 | 3         |
| 62 | Leptin and Body Fat in Type 2 Diabetes and Monodrug Therapy. Journal of Clinical Endocrinology and<br>Metabolism, 2003, 88, 1543-1553.                                                                                                                                                                                                   | 1.8 | 40        |
| 63 | UCP2-dependent Proton Leak in Isolated Mammalian Mitochondria. Journal of Biological Chemistry,<br>2002, 277, 3918-3925.                                                                                                                                                                                                                 | 1.6 | 65        |
| 64 | The Concept of Selective Leptin Resistance: Evidence From Agouti Yellow Obese Mice. Diabetes, 2002, 51, 439-442.                                                                                                                                                                                                                         | 0.3 | 202       |
| 65 | Leptin Potentiates Thermogenic Sympathetic Responses to Hypothermia: A Receptor-Mediated Effect.<br>Diabetes, 2002, 51, 2434-2440.                                                                                                                                                                                                       | 0.3 | 50        |
| 66 | Uncoupling Metabolism and Coupling Leptin to Cardiovascular Disease. Arteriosclerosis, Thrombosis,<br>and Vascular Biology, 2002, 22, 881-883.                                                                                                                                                                                           | 1.1 | 14        |
| 67 | Differential modulation of leptin-induced sympathoexcitation by baroreflex activation. Journal of Hypertension, 2002, 20, 1633-1641.                                                                                                                                                                                                     | 0.3 | 39        |
| 68 | Hemodynamic consequences of neuropeptide Y-induced obesity. American Journal of Hypertension, 2002, 15, 137-142.                                                                                                                                                                                                                         | 1.0 | 15        |
| 69 | Leptin interacts with heart rate but not sympathetic nerve traffic in healthy male subjects. Journal of<br>Hypertension, 2001, 19, 1089-1094.                                                                                                                                                                                            | 0.3 | 59        |
| 70 | Role of Corticotrophin-Releasing Factor in Effects of Leptin on Sympathetic Nerve Activity and Arterial Pressure. Hypertension, 2001, 38, 384-388.                                                                                                                                                                                       | 1.3 | 59        |
| 71 | Leptin Acts in the Central Nervous System to Produce Dose-Dependent Changes in Arterial Pressure.<br>Hypertension, 2001, 37, 936-942.                                                                                                                                                                                                    | 1.3 | 138       |
| 72 | Lipotoxicity and glucotoxicity in type 2 diabetes. Postgraduate Medicine, 2001, 109, 55-64.                                                                                                                                                                                                                                              | 0.9 | 31        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effect of Acute and Antecedent Hypoglycemia on Sympathetic Neural Activity and Catecholamine<br>Responsiveness in Normal Rats. Diabetes, 2001, 50, 1119-1125.                                                       | 0.3 | 28        |
| 74 | Does Leptin Stimulate Nitric Oxide to Oppose the Effects of Sympathetic Activation?. Hypertension, 2001, 38, 1081-1086.                                                                                             | 1.3 | 61        |
| 75 | Pubertal Adolescent Male-Female Differences in Insulin Sensitivity and Glucose Effectiveness<br>Determined by the One Compartment Minimal Model. Pediatric Research, 2000, 48, 384-388.                             | 1.1 | 105       |
| 76 | Fasting and Leptin Modulate Adipose and Muscle Uncoupling Protein: Divergent Effects Between<br>Messenger Ribonucleic Acid and Protein Expression1. Endocrinology, 1999, 140, 1511-1519.                            | 1.4 | 101       |
| 77 | Interactions Between the Melanocortin System and Leptin in Control of Sympathetic Nerve Traffic.<br>Hypertension, 1999, 33, 542-547.                                                                                | 1.3 | 349       |
| 78 | Heritability of plasma leptin levels. Journal of Hypertension, 1999, 17, 27-31.                                                                                                                                     | 0.3 | 51        |
| 79 | Plasma leptin in diabetic and insulin-treated diabetic and normal rats. Metabolism: Clinical and Experimental, 1998, 47, 584-591.                                                                                   | 1.5 | 61        |
| 80 | Effects of Leptin on Insulin Sensitivity in Normal Rats*. Endocrinology, 1997, 138, 3395-3401.                                                                                                                      | 1.4 | 234       |
| 81 | Sympathetic and Cardiorenal Actions of Leptin. Hypertension, 1997, 30, 619-623.                                                                                                                                     | 1.3 | 276       |
| 82 | Effect of Maternal Diabetes upon Fetal Rat Myocardial and Skeletal Muscle Glucose Transporters1.<br>Pediatric Research, 1997, 41, 11-19.                                                                            | 1.1 | 40        |
| 83 | Rat Adipose ob mRNA Levels in States of Altered Circulating Glucose and Insulin. Biochemical and Biophysical Research Communications, 1996, 220, 520-525.                                                           | 1.0 | 33        |
| 84 | Time-dependent regulation of rat adipose tissue glucose transporter (GLUT4) mRNA and protein by<br>insulin in streptozocin-diabetic and normal rats. Metabolism: Clinical and Experimental, 1992, 41,<br>1267-1272. | 1.5 | 12        |
| 85 | Mammalian Glucose Transporters: Structure and Molecular Regulation. , 1991, 47, 349-388.                                                                                                                            |     | 66        |
| 86 | Assessment of Glucose Transporter Gene Expression Using the Polymerase Chain Reaction.<br>Endocrinology, 1991, 128, 2387-2394.                                                                                      | 1.4 | 18        |
| 87 | Regulation of the Glucose Transporter in Animal Models of Diabetes. Advances in Experimental<br>Medicine and Biology, 1991, 293, 249-262.                                                                           | 0.8 | 4         |
| 88 | Regulation of Glucose Transporter Messenger RNA Levels in Rat Adipose Tissue by Insulin. Molecular<br>Endocrinology, 1990, 4, 583-588.                                                                              | 3.7 | 40        |
| 89 | Computer-Assisted Instruction in Intense Insulin Therapy Using a Mathematical Model for Clinical Simulation With a Clinical Algorithm and Flow Sheet. The Diabetes Educator, 1989, 15, 77-79.                       | 2.6 | 26        |
| 90 | Regulation of the Glucose Transporter in Developing Rat Brain*. Endocrinology, 1989, 124, 1875-1880.                                                                                                                | 1.4 | 77        |

| #  | Article                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Regulation of glucose transporter messenger RNA in insulin-deficient states. Nature, 1989, 340, 72-74.                                                       | 13.7 | 247       |
| 92 | Case Report: Renal Hypophosphatemic Osteomalacia Unmasked by Hyperthyroidism. American Journal of<br>the Medical Sciences, 1986, 292, 231-234.               | 0.4  | 1         |
| 93 | Cellular Mechanisms of Insulin Release: The Effects of Vitamin D Deficiency and Repletion on Rat<br>Insulin Secretion*. Endocrinology, 1983, 113, 1511-1518. | 1.4  | 175       |