Valentin Köhler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6141699/publications.pdf

Version: 2024-02-01

32 papers 1,915 citations

³⁹⁴⁴²¹ 19 h-index 31 g-index

42 all docs 42 docs citations

42 times ranked 2073 citing authors

#	Article	IF	CITATIONS
1	Otto Stern's Legacy in Quantum Optics: Matter Waves and Deflectometry. , 2021, , 547-573.		O
2	Matter–wave interference and deflection of tripeptides decorated with fluorinated alkyl chains. Journal of Mass Spectrometry, 2020, 55, e4514.	1.6	7
3	Neutralization of insulin by photocleavage under high vacuum. Chemical Communications, 2019, 55, 12507-12510.	4.1	5
4	Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chemical Reviews, 2018, 118, 142-231.	47.7	584
5	Pushing the mass limit for intact launch and photoionization of large neutral biopolymers. Communications Chemistry, 2018, 1, .	4.5	10
6	Tailored photocleavable peptides: fragmentation and neutralization pathways in high vacuum. Physical Chemistry Chemical Physics, 2018, 20, 11412-11417.	2.8	9
7	Tailoring the volatility and stability of oligopeptides. Journal of Mass Spectrometry, 2017, 52, 550-556.	1.6	11
8	An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades. Journal of the American Chemical Society, 2016, 138, 5781-5784.	13.7	76
9	Efficient <i>In Situ</i> Regeneration of NADH Mimics by an Artificial Metalloenzyme. ACS Catalysis, 2016, 6, 3553-3557.	11.2	93
10	Upregulation of an Artificial Zymogen by Proteolysis. Angewandte Chemie - International Edition, 2016, 55, 11587-11590.	13.8	29
11	Upregulation of an Artificial Zymogen by Proteolysis. Angewandte Chemie, 2016, 128, 11759-11762.	2.0	7
12	Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design. Journal of the American Chemical Society, 2015, 137, 10414-10419.	13.7	87
13	Editorial overview: Biocatalysis and biotransformation: Bio-inspired, bio-based and bio-linked catalysis. Current Opinion in Chemical Biology, 2015, 25, v-vi.	6.1	2
14	Artificial metalloenzymes for the diastereoselective reduction of NAD ⁺ to NAD ² H. Organic and Biomolecular Chemistry, 2015, 13, 357-360.	2.8	21
15	Artificial concurrent catalytic processes involving enzymes. Chemical Communications, 2015, 51, 450-464.	4.1	106
16	An Artificial Imine Reductase based on the Ribonucleaseâ€S Scaffold. ChemCatChem, 2014, 6, 736-740.	3.7	19
17	Recent Trends in Biomimetic NADH Regeneration. Topics in Catalysis, 2014, 57, 321-331.	2.8	76
18	Concurrent Cross Metathesis and Enzymatic Oxidation: Enabling Offâ€Equilibrium Transformations. ChemCatChem, 2014, 6, 2191-2193.	3.7	3

#	Article	IF	Citations
19	Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin–Streptavidin Technology. ChemCatChem, 2014, 6, 1010-1014.	3.7	36
20	Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nature Chemistry, 2013, 5, 93-99.	13.6	314
21	Genetic Optimization of the Catalytic Efficiency of Artificial Imine Reductases Based on Biotin–Streptavidin Technology. ACS Catalysis, 2013, 3, 1752-1755.	11.2	53
22	Chimeric self-sufficient P450cam-RhFRed biocatalysts with broad substrate scope. Beilstein Journal of Organic Chemistry, 2011, 7, 1494-1498.	2.2	34
23	Design of a Functional Nitric Oxide Reductase within a Myoglobin Scaffold. ChemBioChem, 2010, 11, 1049-1051.	2.6	6
24	Protein-based hybrid catalysts—design and evolution. Current Opinion in Biotechnology, 2010, 21, 744-752.	6.6	45
25	Complex Prolyl Peptides in Two Steps: Biocatalysis and Ugi Reaction. Synfacts, 2010, 2010, 1067-1067.	0.0	0
26	Chiral Boronâ€Bridged Bisoxazoline (Borabox) Ligands: Structures and Reactivities of Pd and Cu Complexes. Chemistry - A European Journal, 2008, 14, 8530-8539.	3.3	26
27	Kinetic Resolution of Diols and Pyridyl Alcohols by Cu(II)(borabox)-Catalyzed Acylation. Organic Letters, 2006, 8, 1879-1882.	4.6	76
28	Synthesis of Boron-Bridged Anionic <i>C</i> ₂ -Symmetric Bisoxazolines and Their Application in Asymmetric Catalysis. Chimia, 2006, 60, 195-198.	0.6	7
29	Efficient Synthesis of Functionalised 4-Hydroxycyclopent-2-en-1-ones by Cyclisation of 1,3-Bis(silyl) Enol Ethers and 1,3-Dicarbonyl Dianions with 1,2-Diketones. European Journal of Organic Chemistry, 2005, 2005, 532-542.	2.4	17
30	Chiral Boron-Bridged Bisoxazolines: Readily Available Anionic Ligands for Asymmetric Catalysis. Angewandte Chemie - International Edition, 2005, 44, 4888-4891.	13.8	89
31	Synthesis of \hat{I}^3 -Lactones and Ascorbic Acid Analogues by Diastereoselective Hydrogenation of \hat{I}_\pm -Hydroxy- \hat{I}^3 -alkylidenebutenolides. European Journal of Organic Chemistry, 2002, 2002, 1566-1572.	2.4	8
32	First Domino Mukaiyama-Aldol Cyclizations of 1,3-Bis(trimethylsiloxy)-1,3-butadienes with 1,2-Diketones. Organic Letters, 2000, 2, 1597-1599.	4.6	32