
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6141318/publications.pdf Version: 2024-02-01

Μλατινι Ριλτμ

#	Article	IF	CITATIONS
1	Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death and Disease, 2017, 8, e3153-e3153.	6.3	190
2	Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 871-882.	1.9	148
3	circFGFR4 Promotes Differentiation of Myoblasts via Binding miR-107 to Relieve Its Inhibition of Wnt3a. Molecular Therapy - Nucleic Acids, 2018, 11, 272-283.	5.1	142
4	CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miRâ€133a. Journal of Cellular Physiology, 2018, 233, 4643-4651.	4.1	137
5	EVOLUTION IN EXTREME ENVIRONMENTS: REPLICATED PHENOTYPIC DIFFERENTIATION IN LIVEBEARING FISH INHABITING SULFIDIC SPRINGS. Evolution; International Journal of Organic Evolution, 2011, 65, 2213-2228.	2.3	123
6	Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biological Reviews, 2019, 94, 457-482.	10.4	123
7	TOXIC HYDROGEN SULFIDE AND DARK CAVES: PHENOTYPIC AND GENETIC DIVERGENCE ACROSS TWO ABIOTIC ENVIRONMENTAL GRADIENTS IN <i>POECILIA MEXICANA</i> . Evolution; International Journal of Organic Evolution, 2008, 62, 2643-2659.	2.3	122
8	Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles, 2006, 10, 577-585.	2.3	116
9	Biotic interchange between the Indian subcontinent and mainland Asia through time. Nature Communications, 2016, 7, 12132.	12.8	110
10	The role of sexual harassment in cave and surface dwelling populations of the Atlantic molly, Poecilia mexicana (Poeciliidae, Teleostei). Behavioral Ecology and Sociobiology, 2003, 54, 303-309.	1.4	91
11	Audience effect alters mating preferences in a livebearing fish, the Atlantic molly, Poecilia mexicana. Animal Behaviour, 2008, 75, 21-29.	1.9	85
12	Sexual harassment in live-bearing fishes (Poeciliidae): comparing courting and noncourting species. Behavioral Ecology, 2007, 18, 680-688.	2.2	83
13	Survival in an extreme habitat: the roles of behaviour and energy limitation. Die Naturwissenschaften, 2007, 94, 991-996.	1.6	77
14	Toxic hydrogen sulfide and dark caves: lifeâ€history adaptations in a livebearing fish (Poecilia mexicana,) Tj ETQc	10	Qverlock 10
15	Parallel evolution of cox genes in H2S-tolerant fish as key adaptation to a toxic environment. Nature Communications, 2014, 5, 3873.	12.8	75
16	Natural and sexual selection against immigrants maintains differentiation among microâ€ellopatric populations. Journal of Evolutionary Biology, 2009, 22, 2298-2304.	1.7	72
17	Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide. Molecular Ecology, 2006, 16, 967-976.	3.9	68
18	Choosy males from the underground: male mating preferences in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana). Die Naturwissenschaften, 2006, 93, 103-109.	1.6	62

#	Article	IF	CITATIONS
19	Colonisation of toxic environments drives predictable lifeâ€history evolution in livebearing fishes (Poeciliidae). Ecology Letters, 2014, 17, 65-71.	6.4	61
20	miR-30-5p Regulates Muscle Differentiation and Alternative Splicing of Muscle-Related Genes by Targeting MBNL. International Journal of Molecular Sciences, 2016, 17, 182.	4.1	61
21	Cave molly females (Poecilia mexicana, Poeciliidae, Teleostei) like well-fed males. Behavioral Ecology and Sociobiology, 2005, 58, 144-151.	1.4	60
22	GENETIC DIFFERENTIATION AND SELECTION AGAINST MIGRANTS IN EVOLUTIONARILY REPLICATED EXTREME ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2013, 67, 2647-2661.	2.3	58
23	Male Fish Deceive Competitors about Mating Preferences. Current Biology, 2008, 18, 1138-1141.	3.9	56
24	Extreme environments and the origins of biodiversity: Adaptation and speciation in sulphide spring fishes. Molecular Ecology, 2018, 27, 843-859.	3.9	56
25	Variation along the shy–bold continuum in extremophile fishes (Poecilia mexicana, Poecilia) Tj ETQq1 1 0.7843	314 rgBT / 1.4	Overlock 10
26	Unique evolutionary trajectories in repeated adaptation to hydrogen sulphideâ€ŧoxic habitats of a neotropical fish (<i>Poecilia mexicana</i>). Molecular Ecology, 2015, 24, 5446-5459.	3.9	49
27	Convergent life-history shifts: toxic environments result in big babies in two clades of poeciliids. Die Naturwissenschaften, 2010, 97, 133-141.	1.6	48
28	Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event. BMC Evolutionary Biology, 2010, 10, 256.	3.2	48
29	The Rediscovery of a Long Described Species Reveals Additional Complexity in Speciation Patterns of Poeciliid Fishes in Sulfide Springs. PLoS ONE, 2013, 8, e71069.	2.5	47
30	Spectral sensitivity of mollies: comparing surface- and cave-dwelling Atlantic mollies, Poecilia mexicana. Journal of Fish Biology, 2006, 69, 54-65.	1.6	46
31	Predation of a cave fish (<i>Poecilia mexicana</i> , Poeciliidae) by a giant waterâ€bug (<i>Belostoma</i> ,) Tj ETQ	91_1_0.78	34314 rgBT (0
32	Reintroduction of freshwater macroinvertebrates: challenges and opportunities. Biological Reviews, 2019, 94, 368-387.	10.4	43
33	Shared and Unique Patterns of Embryo Development in Extremophile Poeciliids. PLoS ONE, 2011, 6, e27377.	2.5	42
34	Linc-smad7 promotes myoblast differentiation and muscle regeneration via sponging miR-125b. Epigenetics, 2018, 13, 591-604.	2.7	41
35	Male mating behavior and costs of sexual harassment for females in cavernicolous and extremophile populations of Atlantic mollies (Poecilia mexicana). Behaviour, 2008, 145, 73-98.	0.8	39
36	Predator-induced changes of female mating preferences: innate and experiential effects. BMC Evolutionary Biology, 2011, 11, 190.	3.2	39

#	Article	IF	CITATIONS
37	Two endemic and endangered fishes, <i>Poecilia sulphuraria</i> (Alvarez, 1948) and <i>Gambusia eurystoma</i> Miller, 1975 (Poeciliidae, Teleostei) as only survivors in a small sulphidic habitat. Journal of Fish Biology, 2008, 72, 523-533.	1.6	38
38	Does divergence in female mate choice affect male size distributions in two cave fish populations?. Biology Letters, 2008, 4, 452-454.	2.3	37
39	Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae). Hearing Research, 2010, 267, 137-148.	2.0	37
40	Extreme habitats are not refuges: poeciliids suffer from increased aerial predation risk in sulphidic southern Mexican habitats. Biological Journal of the Linnean Society, 0, 101, 417-426.	1.6	37
41	Personality affects mate choice: bolder males show stronger audience effects under high competition. Behavioral Ecology, 2015, 26, 1314-1325.	2.2	37
42	Toxic hydrogen sulphide and dark caves: pronounced male life-history divergence among locally adapted Poecilia mexicana (Poeciliidae). Journal of Evolutionary Biology, 2011, 24, 596-606.	1.7	36
43	Female sperm limitation in natural populations of a sexual/asexual mating complex (<i>Poecilia) Tj ETQq1 1 0.784</i>	4314 rgBT 2.3	Qyerlock
44	The communicatory significance of localised defecation sites in bushbuck (Tragelaphus scriptus). Behavioral Ecology and Sociobiology, 2006, 60, 368-378.	1.4	34
45	Sperm competition risk affects male mate choice copying. Behavioral Ecology and Sociobiology, 2011, 65, 1699-1707.	1.4	34
46	Extremophile Poeciliidae: multivariate insights into the complexity of speciation along replicated ecological gradients. BMC Evolutionary Biology, 2016, 16, 136.	3.2	33
47	Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds. PLoS ONE, 2017, 12, e0183921.	2.5	33
48	Parallel evolution leads to reduced shoaling behavior in two cave dwelling populations of Atlantic mollies (Poecilia mexicana, Poeciliidae, Teleostei). Environmental Biology of Fishes, 2008, 82, 289-297.	1.0	32
49	Audience effect alters male but not female mating preferences. Behavioral Ecology and Sociobiology, 2009, 63, 381-390.	1.4	32
50	Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. Journal of Evolutionary Biology, 2014, 27, 960-974.	1.7	32
51	Offspring number in a livebearing fish (Poecilia mexicana, Poeciliidae): reduced fecundity and reduced plasticity in a population of cave mollies. Environmental Biology of Fishes, 2009, 84, 89-94.	1.0	31
52	Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish. Acta Oecologica, 2007, 31, 270-275.	1.1	30
53	Matrotrophy in the cave molly: an unexpected provisioning strategy in an extreme environment. Evolutionary Ecology, 2010, 24, 789-801.	1.2	30
54	Females prefer males with superior fighting abilities but avoid sexually harassing winners when eavesdropping on male fights. Behavioral Ecology and Sociobiology, 2013, 67, 675-683.	1.4	30

MARTIN PLATH

#	Article	IF	CITATIONS
55	A phylogeographic framework for the conservation of Saharan and Arabian Dorcas gazelles (Artiodactyla: Bovidae). Organisms Diversity and Evolution, 2011, 11, 317-329.	1.6	29
56	Speciation in caves: experimental evidence that permanent darkness promotes reproductive isolation. Biology Letters, 2011, 7, 909-912.	2.3	29
57	Social network analysis resolves temporal dynamics of male dominance relationships. Behavioral Ecology and Sociobiology, 2014, 68, 935-945.	1.4	29
58	Are accessory hearing structures linked to inner ear morphology? Insights from 3D orientation patterns of ciliary bundles in three cichlid species. Frontiers in Zoology, 2014, 11, 25.	2.0	29
59	Divergent Evolution of Male Aggressive Behaviour: Another Reproductive Isolation Barrier in Extremophile Poeciliid Fishes?. International Journal of Evolutionary Biology, 2012, 2012, 1-14.	1.0	28
60	A new and morphologically distinct population of cavernicolous Poecilia mexicana (Poeciliidae:) Tj ETQq0 0 0 rgBT	/Overlock 1.0	10 Tf 50 54
61	Misleading Mollies. Communicative and Integrative Biology, 2008, 1, 199-203.	1.4	27
62	A century later: Adaptive plasticity and rapid evolution contribute to geographic variation in invasive mosquitofish. Science of the Total Environment, 2020, 726, 137908.	8.0	26
63	Inner Ear Morphology in the Atlantic Molly Poecilia mexicana—First Detailed Microanatomical Study of the Inner Ear of a Cyprinodontiform Species. PLoS ONE, 2011, 6, e27734.	2.5	25
64	Genomic resources for a model in adaptation and speciation research: characterization of the Poecilia mexicana transcriptome. BMC Genomics, 2012, 13, 652.	2.8	25
65	Impact of ParentalBos taurusandBos indicusOrigins on Copy Number Variation in Traditional Chinese Cattle Breeds. Genome Biology and Evolution, 2015, 7, 2352-2361.	2.5	25
66	Developmental transcriptome profiling of bovine muscle tissue reveals an abundant GosB that regulates myoblast proliferation and apoptosis. Oncotarget, 2017, 8, 32083-32100.	1.8	25
67	Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect. Journal of Animal Ecology, 2019, 88, 1498-1509.	2.8	25
68	Reduction of the association preference for conspecifics in cave-dwelling Atlantic mollies, Poecilia mexicana. Behavioral Ecology and Sociobiology, 2006, 60, 794-802.	1.4	23
69	Sex and the public. Communicative and Integrative Biology, 2011, 4, 276-280.	1.4	23
70	Shared and unique patterns of phenotypic diversification along a stream gradient in two congeneric species. Scientific Reports, 2016, 6, 38971.	3.3	23
71	Personality differentially affects individual mate choice decisions in female and male Western mosquitofish (Gambusia affinis). PLoS ONE, 2018, 13, e0197197.	2.5	23
72	Hydrogen Sulfide-Toxic Habitats. , 2015, , 137-159.		23

5

#	Article	IF	CITATIONS
73	Does personality affect premating isolation between locally-adapted populations?. BMC Evolutionary Biology, 2016, 16, 138.	3.2	22

Sex-specific local life-history adaptation in surface- and cave-dwelling Atlantic mollies (Poecilia) Tj ETQq0 0 0 rgBT / Overlock 10 Tf 50 702

75	Environmental parameters and anthropogenic effects predicting the spatial distribution of wild ungulates in the Akagera savannah ecosystem. African Journal of Ecology, 2009, 47, 756-766.	0.9	21
76	Pronounced species turnover, but no functional equivalence in leaf consumption of invasive amphipods in the river Rhine. Biological Invasions, 2016, 18, 763-774.	2.4	21
77	Thermal regime drives a latitudinal gradient in morphology and life history in a livebearing fish. Biological Journal of the Linnean Society, 2018, 125, 126-141.	1.6	21
78	Ecology and evolution along environmental gradients. Environmental Epigenetics, 2018, 64, 193-196.	1.8	21
79	Water pollution affects fish community structure and alters evolutionary trajectories of invasive guppies (Poecilia reticulata). Science of the Total Environment, 2020, 730, 138912.	8.0	21
80	Behavioral diversification in a young species flock of pupfish (Cyprionodon spp.): shoaling and aggressive behavior. Behavioral Ecology and Sociobiology, 2008, 62, 1727-1737.	1.4	19
81	Predation by Three Species of Spiders on a cave Fish in a Mexican Sulphur Cave. Arachnology, 2010, 15, 55-58.	0.4	17
82	Natural and sexual selection drive multivariate phenotypic divergence along climatic gradients in an invasive fish. Scientific Reports, 2018, 8, 11164.	3.3	17
83	Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Frontiers in Zoology, 2019, 16, 29.	2.0	17
84	Feeding efficiency and food competition in coexisting sexual and asexual livebearing fishes of the genus Poecilia. Environmental Biology of Fishes, 2011, 90, 197-205.	1.0	16
85	Gradient Evolution of Body Colouration in Surface- and Cave-Dwelling <i>Poecilia mexicana</i> and the Role of Phenotype-Assortative Female Mate Choice. BioMed Research International, 2013, 2013, 1-15.	1.9	16
86	Using native and invasive livebearing fishes (Poeciliidae, Teleostei) for the integrated biological assessment of pollution in urban streams. Science of the Total Environment, 2020, 698, 134336.	8.0	16
87	Scent marking and territorial defence in male bushbuck (Tragelaphus scriptus). Journal of Zoology, 2006, 270, 060606025751030-???.	1.7	15
88	Effects of extreme habitat conditions on otolith morphology – a case study on extremophile livebearing fishes (Poecilia mexicana, P. sulphuraria). Zoology, 2011, 114, 321-334.	1.2	15
89	Global transcriptional profiling of longissimus thoracis muscle tissue in fetal and juvenile domestic goat using <scp>RNA</scp> sequencing. Animal Genetics, 2015, 46, 655-665.	1.7	14
90	Adaptive growth reduction in response to fish kairomones allows mosquito larvae (Culex pipiens) to reduce predation risk. Aquatic Sciences, 2016, 78, 303-314.	1.5	14

#	Article	IF	CITATIONS
91	Geographical and temporal variation of multiple paternity in invasive mosquitofish (Gambusia) Tj ETQq1 1 0.7843	814.rgBT 3.9	Oyerlock 10
92	Sperm production in an extremophile fish, the cave molly (Poecilia mexicana, Poeciliidae, Teleostei). Aquatic Ecology, 2008, 42, 685-692.	1.5	13
93	Hunting differentially affects mixedâ€sex and bachelorâ€herds in a gregarious ungulate, the impala (<i>Aepyceros melampus</i> : Bovidae). African Journal of Ecology, 2010, 48, 255-264.	0.9	13
94	Toxic hydrogen sulphide shapes brain anatomy: a comparative study of sulphideâ€adapted ecotypes in the <i>Poecilia mexicana</i> complex. Journal of Zoology, 2016, 300, 163-176.	1.7	13
95	Threatened fishes of the world: Poecilia sulphuraria (Alvarez, 1948) (Poeciliidae). Environmental Biology of Fishes, 2009, 85, 333-334.	1.0	12
96	Examination of boldness traits in sexual and asexual mollies (Poecilia latipinna, P. formosa). Acta Ethologica, 2011, 14, 77-83.	0.9	12
97	Phenotypic differentiation in a heterogeneous environment: morphological and lifeâ€history responses to ecological gradients in a livebearing fish. Journal of Zoology, 2020, 310, 10-23.	1.7	12
98	Microhabitat use, population densities, and size distributions of sulfur cave-dwelling <i>Poecilia mexicana</i> . PeerJ, 2014, 2, e490.	2.0	12
99	Photophilic behaviour in surface- and cave-dwelling Atlantic mollies Poecilia mexicana (Poeciliidae). Journal of Fish Biology, 2007, 71, 1225-1231.	1.6	11
100	Sex recognition in surface- and cave-dwelling Atlantic molly females (Poecilia mexicana, Poeciliidae,) Tj ETQq0 0 0	rgBT /Ov	erlock 10 Tf . 11
101	Predator Avoidance in Extremophile Fish. Life, 2013, 3, 161-180.	2.4	11
102	Predator experience homogenizes consistent individual differences in predator avoidance. Journal of Ethology, 2016, 34, 155-165.	0.8	11
103	Consistent individual differences in associative learning speed are not linked to boldness in female Atlantic mollies. Animal Cognition, 2018, 21, 661-670.	1.8	11
104	Evolution in caves: selection from darkness causes spinal deformities in teleost fishes. Biology Letters, 2018, 14, 20180197.	2.3	11
105	Molecular and morphometric evidence for the widespread introduction of Western mosquitofish Gambusia affinis (Baird and Girard, 1853) into freshwaters of mainland China. Biolnvasions Records, 2017, 6, 281-289.	1.1	11
106	Female choice for large body size in the cave molly, Poecilia mexicana (Poeciliidae, Teleostei): influence of species- and sex-specific cues. Behaviour, 2007, 144, 1147-1160.	0.8	10
107	Do ecotypes of bushbuck differ in grouping patterns?. Acta Ethologica, 2009, 12, 71-78.	0.9	10

Phototactic response and light sensitivity in an epigean and a hypogean population of a barb (Garra) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

MARTIN PLATH

#	Article	IF	CITATIONS
109	Sexual and natural selection on morphological traits in a marine amphipod, <i>Pontogammarus maeoticus</i> (Sowinsky, 1894). Marine Biology Research, 2011, 7, 135-146.	0.7	10
110	Multiple paternity in different populations of the sailfin molly, Poecilia latipinna. Animal Biology, 2012, 62, 245-262.	1.0	10
111	Female philopatry and male dispersal in a cryptic, bushâ€dwelling antelope: a combined molecular and behavioural approach. Journal of Zoology, 2010, 280, 213-220.	1.7	8
112	Characterizing a novel predator–prey relationship between native Diplonychus esakii (Heteroptera:) Tj ETQq0 C Aquatic Research, 2017, 9, 141-151.	0 rgBT /0 1.5	verlock 10 1 8
113	Predator-induced changes of male and female mating preferences: innate and learned components. Environmental Epigenetics, 2019, 65, 305-316.	1.8	8
114	Threatened fishes of the world: Gambusia eurystoma Miller, 1975 (Poeciliidae). Environmental Biology of Fishes, 2009, 85, 251-251.	1.0	7
115	Intrasexual competition enhances reproductive isolation between locally adapted populations. Environmental Epigenetics, 2018, 64, 125-133.	1.8	7
116	Prey preferences in captivity of the freshwater crab Potamonautes lirrangensis from Lake Malawi with special emphasis on molluscivory. Hydrobiologia, 2014, 739, 145-153.	2.0	6
117	Extremophile Fishes: An Integrative Synthesis. , 2015, , 279-296.		6
118	Seasonal variation in reproductive behaviour of bushbuck (<i>Tragelaphus scriptus</i> Pallas, 1766) in an equatorial savannah ecosystem. African Journal of Ecology, 2009, 47, 592-597.	0.9	5
119	Extremophile Fishes: An Introduction. , 2015, , 1-7.		5
120	Correlated divergence of female and male genitalia in replicated lineages with ongoing ecological speciation. Evolution; International Journal of Organic Evolution, 2019, 73, 1200-1212.	2.3	4
121	Invasive fish retain plasticity of naturally selected, but diverge in sexually selected traits. Science of the Total Environment, 2022, 811, 152386.	8.0	2
122	Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies (Poecilia mexicana). Genes, 2018, 9, 232.	2.4	1
123	Human health risk assessment for (re)emerging protozoan parasites in surface water used for public supply and recreational activities. Environmental Monitoring and Assessment, 2022, 194, 407.	2.7	1
124	A test for conspecific cueing in two sympatric species of pupfish (Cyprinodon beltrani, C. simus). Environmental Biology of Fishes, 2009, 85, 41-48.	1.0	0
125	Sulphide-toxic habitats are not refuges from parasite infections in an extremophile fish. Acta Oecologica, 2020, 106, 103602.	1.1	0