List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6141211/publications.pdf Version: 2024-02-01

		66343	24982
138	12,603	42	109
papers	citations	h-index	g-index
141	141	141	12966
all docs	docs citations	times ranked	citing authors

IAMES I YOO

#	Article	lF	CITATIONS
1	Bioreactor design and validation for manufacturing strategies in tissue engineering. Bio-Design and Manufacturing, 2022, 5, 43-63.	7.7	21
2	Bioink materials for translational applications. MRS Bulletin, 2022, 47, 80-90.	3.5	3
3	In vitro breast cancer model with patient-specific morphological features for personalized medicine. Biofabrication, 2022, 14, 034102.	7.1	10
4	The Delivery of the Recombinant Protein Cocktail Identified by Stem Cell-Derived Secretome Analysis Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	4
5	Self-Assembling Peptide Solution Accelerates Hemostasis. Advances in Wound Care, 2021, 10, 191-203.	5.1	9
6	Automated Image Analysis Methodologies to Compute Bioink Printability. Advanced Engineering Materials, 2021, 23, 2000900.	3.5	7
7	A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering. Acta Biomaterialia, 2021, 121, 193-203.	8.3	81
8	Pelvic floor muscle function recovery using biofabricated tissue constructs with neuromuscular junctions. Acta Biomaterialia, 2021, 121, 237-249.	8.3	8
9	Optimized culture system to maximize ovarian cell growth and functionality in vitro. Cell and Tissue Research, 2021, 385, 161-171.	2.9	4
10	Adenosine-treated bioprinted muscle constructs prolong cell survival and improve tissue formation. Bio-Design and Manufacturing, 2021, 4, 441-451.	7.7	1
11	Accelerating neovascularization and kidney tissue formation with a 3D vascular scaffold capturing native vascular structure. Acta Biomaterialia, 2021, 124, 233-243.	8.3	7
12	Regenerative Medicine Approaches in Bioengineering Female Reproductive Tissues. Reproductive Sciences, 2021, 28, 1573-1595.	2.5	10
13	Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting. Biofabrication, 2021, 13, 034103.	7.1	50
14	Self-aligned myofibers in 3D bioprinted extracellular matrix-based construct accelerate skeletal muscle function restoration. Applied Physics Reviews, 2021, 8, 021405.	11.3	33
15	Enhanced method to select human oogonial stem cells for fertility research. Cell and Tissue Research, 2021, 386, 145-156.	2.9	10
16	Engineering Functional Rat Ovarian Spheroids Using Granulosa and Theca Cells. Reproductive Sciences, 2021, 28, 1697-1708.	2.5	4
17	Bioprinting Au Natural: The Biologics of Bioinks. Biomolecules, 2021, 11, 1593.	4.0	17
18	Methods to generate tissue-derived constructs for regenerative medicine applications. Methods, 2020, 171, 3-10.	3.8	31

#	Article	IF	CITATIONS
19	Encapsulation of Mesenchymal Stem Cells in 3D Ovarian Cell Constructs Promotes Stable and Long-Term Hormone Secretion with Improved Physiological Outcomes in a Syngeneic Rat Model. Annals of Biomedical Engineering, 2020, 48, 1058-1070.	2.5	22
20	A novel decellularized skeletal muscle-derived ECM scaffolding system for in situ muscle regeneration. Methods, 2020, 171, 77-85.	3.8	39
21	Kidney regeneration approaches for translation. World Journal of Urology, 2020, 38, 2075-2079.	2.2	6
22	Bioprinted Skin Recapitulates Normal Collagen Remodeling in Full-Thickness Wounds. Tissue Engineering - Part A, 2020, 26, 512-526.	3.1	79
23	Decellularization and recellularization strategies for translational medicine. Methods, 2020, 171, 1-2.	3.8	2
24	Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographical cues. Biomaterials, 2020, 230, 119632.	11.4	120
25	Administration of secretome from human placental stem cellâ€conditioned media improves recovery of erectile function in the pelvic neurovascular injury model. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1394-1402.	2.7	6
26	Microfluidic Systems for Assisted Reproductive Technologies: Advantages and Potential Applications. Tissue Engineering and Regenerative Medicine, 2020, 17, 787-800.	3.7	14
27	Applications of Organoids for Tissue Engineering and Regenerative Medicine. Tissue Engineering and Regenerative Medicine, 2020, 17, 729-730.	3.7	2
28	Decellularized Skin Extracellular Matrix (dsECM) Improves the Physical and Biological Properties of Fibrinogen Hydrogel for Skin Bioprinting Applications. Nanomaterials, 2020, 10, 1484.	4.1	41
29	NIR fluorescence for monitoring in vivo scaffold degradation along with stem cell tracking in bone tissue engineering. Biomaterials, 2020, 258, 120267.	11.4	40
30	Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chemical Reviews, 2020, 120, 11093-11127.	47.7	62
31	3D Bioprinted Highly Elastic Hybrid Constructs for Advanced Fibrocartilaginous Tissue Regeneration. Chemistry of Materials, 2020, 32, 8733-8746.	6.7	40
32	The Influence of Printing Parameters and Cell Density on Bioink Printing Outcomes. Tissue Engineering - Part A, 2020, 26, 1349-1358.	3.1	36
33	The effect of BMP-mimetic peptide tethering bioinks on the differentiation of dental pulp stem cells (DPSCs) in 3D bioprinted dental constructs. Biofabrication, 2020, 12, 035029.	7.1	49
34	The Role of the Microenvironment in Controlling the Fate of Bioprinted Stem Cells. Chemical Reviews, 2020, 120, 11056-11092.	47.7	37
35	A tissue-engineered uterus supports live births in rabbits. Nature Biotechnology, 2020, 38, 1280-1287.	17.5	55
36	Reno-protection of Urine-derived Stem Cells in A Chronic Kidney Disease Rat Model Induced by Renal Ischemia and Nephrotoxicity. International Journal of Biological Sciences, 2020, 16, 435-446.	6.4	26

#	Article	IF	CITATIONS
37	Dynamic Changes in Erectile Function and Histological Architecture After Intracorporal Injection of Human Placental Stem Cells in a Pelvic Neurovascular Injury Rat Model. Journal of Sexual Medicine, 2020, 17, 400-411.	0.6	13
38	Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nature Communications, 2020, 11, 1025.	12.8	130
39	Assessment methodologies for extrusion-based bioink printability. Biofabrication, 2020, 12, 022003.	7.1	214
40	Tissue engineering of the kidney. , 2020, , 825-843.		5
41	Three-dimensional bioprinting for tissue engineering. , 2020, , 1391-1415.		10
42	Synergistic effect of CNTF and GDNF on directed neurite growth in chick embryo dorsal root ganglia. PLoS ONE, 2020, 15, e0240235.	2.5	2
43	Synergistic effect of CNTF and GDNF on directed neurite growth in chick embryo dorsal root ganglia. , 2020, 15, e0240235.		0
44	Synergistic effect of CNTF and GDNF on directed neurite growth in chick embryo dorsal root ganglia. , 2020, 15, e0240235.		0
45	Synergistic effect of CNTF and GDNF on directed neurite growth in chick embryo dorsal root ganglia. , 2020, 15, e0240235.		0
46	Synergistic effect of CNTF and GDNF on directed neurite growth in chick embryo dorsal root ganglia. , 2020, 15, e0240235.		0
47	State-of-the-Art Strategies for the Vascularization of Three-Dimensional Engineered Organs. Vascular Specialist International, 2019, 35, 77-89.	0.6	26
48	Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. PLoS ONE, 2019, 14, e0223689.	2.5	38
49	Effect of Hierarchical Scaffold Consisting of Aligned dECM Nanofibers and Poly(lactide- <i>co</i> -glycolide) Struts on the Orientation and Maturation of Human Muscle Progenitor Cells. ACS Applied Materials & Interfaces, 2019, 11, 39449-39458.	8.0	46
50	Controlled Delivery of Stem Cell-Derived Trophic Factors Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury in Rats. Stem Cells Translational Medicine, 2019, 8, 959-970.	3.3	12
51	Use of uniformly sized muscle fiber fragments for restoration of muscle tissue function. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1230-1240.	2.7	0
52	Preface. Current Stem Cell Research and Therapy, 2019, 14, 2-2.	1.3	0
53	Effect of Human Amniotic Fluid Stem Cells on Kidney Function in a Model of Chronic Kidney Disease. Tissue Engineering - Part A, 2019, 25, 1493-1503.	3.1	12
54	Kidney regeneration with biomimetic vascular scaffolds based on vascular corrosion casts. Acta Biomaterialia, 2019, 95, 328-336.	8.3	21

#	Article	IF	CITATIONS
55	A Photo rosslinkable Kidney ECMâ€Derived Bioink Accelerates Renal Tissue Formation. Advanced Healthcare Materials, 2019, 8, e1800992.	7.6	162
56	Skin bioprinting: the future of burn wound reconstruction?. Burns and Trauma, 2019, 7, 4.	4.9	84
57	In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Scientific Reports, 2019, 9, 1856.	3.3	297
58	Cell-derived Secretome for the Treatment of Renal Disease. Childhood Kidney Diseases, 2019, 23, 67-76.	0.4	1
59	Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. , 2019, 14, e0223689.		0
60	Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. , 2019, 14, e0223689.		0
61	Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. , 2019, 14, e0223689.		0
62	Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. , 2019, 14, e0223689.		0
63	Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature Communications, 2018, 9, 1620.	12.8	520
64	3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomaterialia, 2018, 70, 48-56.	8.3	227
65	In Situ Tissue Regeneration of Renal Tissue Induced by Collagen Hydrogel Injection. Stem Cells Translational Medicine, 2018, 7, 241-250.	3.3	26
66	Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature Reviews Materials, 2018, 3, 21-37.	48.7	502
67	Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, 2018, 36, 384-402.	9.3	465
68	Bioactive Compounds for the Treatment of Renal Disease. Yonsei Medical Journal, 2018, 59, 1015.	2.2	8
69	3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. Scientific Reports, 2018, 8, 12307.	3.3	166
70	3D bioprinted biomask for facial skin reconstruction. Bioprinting, 2018, 10, e00028.	5.8	56
71	Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures. Acta Biomaterialia, 2018, 75, 226-234.	8.3	48
72	Optimization of gelatin–alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication, 2018, 10, 034106.	7.1	336

#	Article	IF	CITATIONS
73	The potential role of tissue-engineered urethral substitution: clinical and preclinical studies. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3-19.	2.7	32
74	Bioartificial Kidneys. Current Stem Cell Reports, 2017, 3, 68-76.	1.6	29
75	Electrospun vascular scaffold for cellularized small diameter blood vessels: A preclinical large animal study. Acta Biomaterialia, 2017, 59, 58-67.	8.3	91
76	In vitro skin expansion: Wound healing assessment. Wound Repair and Regeneration, 2017, 25, 398-407.	3.0	5
77	Bioengineering Strategies to Treat Female Infertility. Tissue Engineering - Part B: Reviews, 2017, 23, 294-306.	4.8	27
78	Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports, 2017, 7, 8837.	3.3	407
79	Clinically Relevant Bioprinting Workflow and Imaging Process for Tissue Construct Design and Validation. 3D Printing and Additive Manufacturing, 2017, 4, 239-247.	2.9	21
80	In vivo transplantation of 3D encapsulated ovarian constructs in rats corrects abnormalities of ovarian failure. Nature Communications, 2017, 8, 1858.	12.8	35
81	Comparing adult renal stem cell identification, characterization and applications. Journal of Biomedical Science, 2017, 24, 32.	7.0	18
82	Progressive Muscle Cell Delivery as a Solution for Volumetric Muscle Defect Repair. Scientific Reports, 2016, 6, 38754.	3.3	28
83	Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Engineering and Regenerative Medicine, 2016, 13, 647-662.	3.7	50
84	Surgical Therapies and Tissue Engineering: At the Intersection Between Innovation and Regulation. Tissue Engineering - Part A, 2016, 22, 397-400.	3.1	4
85	Three-dimensional printing in tissue engineering and regenerative medicine. Tissue Engineering and Regenerative Medicine, 2016, 13, 611-611.	3.7	2
86	Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts. Acta Biomaterialia, 2016, 32, 190-197.	8.3	38
87	Combination of small RNAs for skeletal muscle regeneration. FASEB Journal, 2016, 30, 1198-1206.	0.5	14
88	Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomaterialia, 2016, 29, 52-61.	8.3	67
89	A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 2016, 34, 312-319.	17.5	2,078
90	Kidney diseases and tissue engineering. Methods, 2016, 99, 112-119.	3.8	50

#	Article	IF	CITATIONS
91	Potential Use of Autologous Renal Cells from Diseased Kidneys for the Treatment of Renal Failure. PLoS ONE, 2016, 11, e0164997.	2.5	24
92	Functional recovery of denervated muscle by neurotization using nerve guidance channels. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 838-846.	2.7	4
93	Cell-based therapy for kidney disease. Korean Journal of Urology, 2015, 56, 412.	1.2	19
94	Pre-Clinical Efficacy and Safety Evaluation of Human Amniotic Fluid-Derived Stem Cell Injection in a Mouse Model of Urinary Incontinence. Yonsei Medical Journal, 2015, 56, 648.	2.2	11
95	A novel tissue-engineered trachea with a mechanical behavior similarÂto native trachea. Biomaterials, 2015, 62, 106-115.	11.4	110
96	Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomaterialia, 2015, 16, 14-22.	8.3	121
97	The Dose-Effect Safety Profile of Skeletal Muscle Precursor Cell Therapy in a Dog Model of Intrinsic Urinary Sphincter Deficiency. Stem Cells Translational Medicine, 2015, 4, 286-294.	3.3	23
98	A 3D bioprinted complex structure for engineering the muscle–tendon unit. Biofabrication, 2015, 7, 035003.	7.1	293
99	Bioprinted Scaffolds for Cartilage Tissue Engineering. Methods in Molecular Biology, 2015, 1340, 161-169.	0.9	15
100	Characterization of CD133 Antibody-Directed Recellularized Heart Valves. Journal of Cardiovascular Translational Research, 2015, 8, 411-420.	2.4	12
101	Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials, 2015, 40, 72-79.	11.4	127
102	Enhanced re-endothelialization of acellular kidney scaffolds for whole organ engineering via antibody conjugation of vasculatures. Technology, 2014, 02, 243-253.	1.4	43
103	Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. Lancet, The, 2014, 384, 329-336.	13.7	185
104	Effects of Allogeneic Bone Marrow Derived Mesenchymal Stromal Cell Therapy on Voiding Function in a Rat Model of Parkinson Disease. Journal of Urology, 2014, 191, 850-859.	0.4	20
105	Evaluation of cell viability and apoptosis in human amniotic fluid-derived stem cells with natural cryoprotectants. Cryobiology, 2014, 68, 244-250.	0.7	8
106	Can Computed Tomography–assisted Virtual Endoscopy Be an Innovative Tool for Detecting Urethral Tissue Pathologies?. Urology, 2014, 83, 930-938.	1.0	13
107	Bioprinting technology and its applications. European Journal of Cardio-thoracic Surgery, 2014, 46, 342-348.	1.4	271
108	In situ regeneration of skeletal muscle tissue through host cell recruitment. Acta Biomaterialia, 2014, 10, 4332-4339.	8.3	68

#	Article	IF	CITATIONS
109	Kidney regeneration: Where we are and future perspectives. World Journal of Nephrology, 2014, 3, 24.	2.0	23
110	Myogenic-induced mesenchymal stem cells are capable of modulating the immune response by regulatory T cells. Journal of Tissue Engineering, 2014, 5, 204173141452475.	5.5	5
111	Applicability and Safety of in Vitro Skin Expansion Using a Skin Bioreactor: A Clinical Trial. Archives of Plastic Surgery, 2014, 41, 661-667.	0.9	12
112	Engineered multilayer ovarian tissue that secretes sex steroids and peptide hormones in response to gonadotropins. Biomaterials, 2013, 34, 2412-2420.	11.4	43
113	In situ tissue regeneration through host stem cell recruitment. Experimental and Molecular Medicine, 2013, 45, e57-e57.	7.7	202
114	Understanding the Role of Growth Factors in Modulating Stem Cell Tenogenesis. PLoS ONE, 2013, 8, e83734.	2.5	90
115	Combined systemic and local delivery of stem cell inducing/recruiting factors for <i>in situ</i> tissue regeneration. FASEB Journal, 2012, 26, 158-168.	0.5	72
116	Cell Therapy with Human Renal Cell Cultures Containing Erythropoietin-Positive Cells Improves Chronic Kidney Injury. Stem Cells Translational Medicine, 2012, 1, 373-383.	3.3	33
117	In vitro reconstitution of human kidney structures for renal cell therapy. Nephrology Dialysis Transplantation, 2012, 27, 3082-3090.	0.7	42
118	Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials, 2012, 33, 7756-7764.	11.4	318
119	Bioengineered self-seeding heart valves. Journal of Thoracic and Cardiovascular Surgery, 2012, 143, 201-208.	0.8	70
120	A Tissue-Engineered Muscle Repair Construct for Functional Restoration of an Irrecoverable Muscle Injury in a Murine Model. Tissue Engineering - Part A, 2011, 17, 2291-2303.	3.1	151
121	Regenerative Medicine Strategies for Treating Neurogenic Bladder. International Neurourology Journal, 2011, 15, 109-119.	1.2	40
122	Oxygen Generating Biomaterials for Ischemic Tissue Salvage and Function. FASEB Journal, 2010, 24, lb673.	0.5	0
123	Endothelialization of Heart Valve Matrix Using a Computer-Assisted Pulsatile Bioreactor. Tissue Engineering - Part A, 2009, 15, 807-814.	3.1	40
124	Mouse Latissimus Dorsi as a model system for evaluating tissue engineered skeletal muscle. FASEB Journal, 2009, 23, 468.4.	0.5	0
125	The influence of electrospun aligned poly(É›-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials, 2008, 29, 2899-2906.	11.4	558
126	Host Cell Mobilization for <i>In Situ</i> Tissue Regeneration. Rejuvenation Research, 2008, 11, 747-756.	1.8	53

#	Article	IF	CITATIONS
127	High-Throughput Production of Single-Cell Microparticles Using an Inkjet Printing Technology. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008, 130, .	2.2	102
128	A Composite Scaffold for the Engineering of Hollow Organs and Tissues. FASEB Journal, 2008, 22, 581.5.	0.5	0
129	Tissue Engineered Tubularized Urethra for Surgical Reconstruction: A Preâ€Clinical Study. FASEB Journal, 2008, 22, 581.6.	0.5	2
130	<i>In vitro</i> evaluation of electrospun nanofiber scaffolds for vascular graft application. Journal of Biomedical Materials Research - Part A, 2007, 83A, 999-1008.	4.0	239
131	Total Organ Replacement Using Tissue Engineering. FASEB Journal, 2007, 21, A140.	0.5	1
132	Bioâ€printing of living organized tissues using an inkjet technology. FASEB Journal, 2007, 21, A636.	0.5	1
133	Functional enhancement of bioreactor assisted engineered skeletal muscle. FASEB Journal, 2007, 21, A135.	0.5	0
134	Three-Dimensional Tissue Printing Technology. Manuals in Biomedical Research, 2007, , 183-191.	0.0	0
135	Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, The, 2006, 367, 1241-1246.	13.7	1,690
136	Electrospinning Fabrication of Collagenâ€based Scaffolds for Vascular Tissue Engineering. FASEB Journal, 2006, 20, A1101.	0.5	3
137	Organized kidney tissue structures for the treatment of end stage renal disease. FASEB Journal, 2006, 20, A885.	0.5	0
138	Total penile corpora cavernosa replacement using tissue engineering techniques. FASEB Journal, 2006, 20, A885.	0.5	8