Akiko Iwasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6140086/publications.pdf Version: 2024-02-01

		2544	1536
273	54,204	96	218
papers	citations	h-index	g-index
2.41	0.41	0.41	70514
341	341	341	70514
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Prevention of host-to-host transmission by SARS-CoV-2 vaccines. Lancet Infectious Diseases, The, 2022, 22, e52-e58.	9.1	59
2	Longitudinal Immune Profiling of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection in a Solid Organ Transplant Recipient. Journal of Infectious Diseases, 2022, 225, 374-384.	4.0	7
3	A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice. Journal of Experimental Medicine, 2022, 219, .	8.5	46
4	Impact of Chronic HIV Infection on SARS-CoV-2 Infection, COVID-19 Disease and Vaccines. Current HIV/AIDS Reports, 2022, 19, 5-16.	3.1	9
5	Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nature Communications, 2022, 13, 440.	12.8	100
6	Development and utilization of a surrogate SARS-CoV-2 viral neutralization assay to assess mRNA vaccine responses. PLoS ONE, 2022, 17, e0262657.	2.5	11
7	Equity, diversity, and inclusion in academia: lessons from the Canadian Society of Immunology. Trends in Immunology, 2022, 43, 163-166.	6.8	4
8	Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nature Medicine, 2022, 28, 481-485.	30.7	316
9	High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology, 2022, 7, .	11.9	28
10	Targeting stem-loop 1 of the SARS-CoV-2 $5\hat{a}$ € ² UTR to suppress viral translation and Nsp1 evasion. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	56
11	A phase 2 evaluation of pembrolizumab for recurrent Lynchâ€like versus sporadic endometrial cancers with microsatellite instability. Cancer, 2022, 128, 1206-1218.	4.1	28
12	Multiscale PHATE identifies multimodal signatures of COVID-19. Nature Biotechnology, 2022, 40, 681-691.	17.5	39
13	Lack of association between pandemic chilblains and SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
14	The immunology and immunopathology of COVID-19. Science, 2022, 375, 1122-1127.	12.6	434
15	De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report. Nature Communications, 2022, 13, 1547.	12.8	159
16	UVB-mediated DNA damage induces matrix metalloproteinases to promote photoaging in an AhR- and SP1-dependent manner. JCI Insight, 2022, 7, .	5.0	23
17	A humanized mouse model of chronic COVID-19. Nature Biotechnology, 2022, 40, 906-920.	17.5	71
18	Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature, 2022, 606, 585-593.	27.8	276

#	Article	IF	CITATIONS
19	APOBEC3A regulates transcription from interferon-stimulated response elements. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2011665119.	7.1	7
20	Unexplained post-acute infection syndromes. Nature Medicine, 2022, 28, 911-923.	30.7	231
21	No evidence of fetal defects or anti-syncytin-1 antibody induction following COVID-19 mRNA vaccination. PLoS Biology, 2022, 20, e3001506.	5.6	10
22	Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell, 2022, 185, 2452-2468.e16.	28.9	237
23	What reinfections mean for COVID-19. Lancet Infectious Diseases, The, 2021, 21, 3-5.	9.1	201
24	Sex differences in immune responses. Science, 2021, 371, 347-348.	12.6	123
25	Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal of Experimental Medicine, 2021, 218, .	8.5	677
26	SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity. Med, 2021, 2, 263-280.e6.	4.4	211
27	Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biology, 2021, 19, e3001143.	5.6	180
28	Abstract S03-03: Cancer patients display diminished viral RNA clearance and altered T cell responses during SARS-CoV-2 infection. , 2021, , .		0
29	Tracking smell loss to identify healthcare workers with SARS-CoV-2 infection. PLoS ONE, 2021, 16, e0248025.	2.5	10
30	Clinical characteristics and outcomes for 7,995 patients with SARS-CoV-2 infection. PLoS ONE, 2021, 16, e0243291.	2.5	31
31	Case Study: Longitudinal immune profiling of a SARS-CoV-2 reinfection in a solid organ transplant recipient. , 2021, , .		3
32	The first 12 months of COVID-19: a timeline of immunological insights. Nature Reviews Immunology, 2021, 21, 245-256.	22.7	325
33	Stability of SARS-CoV-2 RNA in Nonsupplemented Saliva. Emerging Infectious Diseases, 2021, 27, 1146-1150.	4.3	61
34	Maternal respiratory SARS-CoV-2 infection in pregnancy is associated with a robust inflammatory response at the maternal-fetal interface. Med, 2021, 2, 591-610.e10.	4.4	122
35	Investigate the origins of COVID-19. Science, 2021, 372, 694-694.	12.6	92
36	Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Reports Medicine, 2021, 2, 100288.	6.5	121

#	Article	IF	CITATIONS
37	B cells join T cell clusters in the host response to recurrent herpes simplex virus 2 infection. Journal of Clinical Investigation, 2021, 131, .	8.2	1
38	Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nature Medicine, 2021, 27, 1178-1186.	30.7	183
39	Antibodies against human endogenous retrovirus K102 envelope activate neutrophils in systemic lupus erythematosus. Journal of Experimental Medicine, 2021, 218, .	8.5	26
40	Diverse functional autoantibodies in patients with COVID-19. Nature, 2021, 595, 283-288.	27.8	619
41	Kynurenic acid may underlie sex-specific immune responses to COVID-19. Science Signaling, 2021, 14, .	3.6	58
42	Generating hard-to-obtain information from easy-to-obtain information: Applications in drug discovery and clinical inference. Patterns, 2021, 2, 100288.	5.9	5
43	Human Leukocyte Antigen Class I Deficiency in Gastric Carcinoma. American Journal of Surgical Pathology, 2021, 45, 1213-1220.	3.7	6
44	Associations of SARS-CoV-2 serum IgG with occupation and demographics of military personnel. PLoS ONE, 2021, 16, e0251114.	2.5	1
45	Challenges in interpreting cytokine data in COVID-19 affect patient care and management. PLoS Biology, 2021, 19, e3001373.	5.6	7
46	How COVID-19 has transformed my science. Neuron, 2021, 109, 3041-3044.	8.1	0
47	Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Science Immunology, 2021, 6, eabl4509.	11.9	141
48	COVID-19 vaccines: Keeping pace with SARS-CoV-2 variants. Cell, 2021, 184, 5077-5081.	28.9	114
49	Reply to: A finding of sex similarities rather than differences in COVID-19 outcomes. Nature, 2021, 597, E10-E11.	27.8	4
50	Evolving A RIG-I Antagonist: A Modified DNA Aptamer Mimics Viral RNA. Journal of Molecular Biology, 2021, 433, 167227.	4.2	10
51	Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature, 2021, 600, 523-529.	27.8	194
52	KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature, 2021, 598, 682-687.	27.8	117
53	High-resolution epitope mapping and characterization of SARS-CoV-2 antibodies in large cohorts of subjects with COVID-19. Communications Biology, 2021, 4, 1317.	4.4	27
54	Endogenous Retroviruses Provide Protection Against Vaginal HSV-2 Disease. Frontiers in Immunology, 2021, 12, 758721.	4.8	1

AKIKO IWASAKI

#	Article	IF	CITATIONS
55	Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Science Immunology, 2021, 6, eabj5129.	11.9	76
56	301. Detection of Pneumococcal Pneumonia During SARS-CoV-2 Infection. Open Forum Infectious Diseases, 2021, 8, S257-S257.	0.9	0
57	High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells Science Immunology, 2021, , eabl5652.	11.9	6
58	Mucosal Vaccines for Genital Herpes. , 2020, , 723-734.		0
59	Detection of SARS-CoV-2 RNA by multiplex RT-qPCR. PLoS Biology, 2020, 18, e3000867.	5.6	64
60	Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature, 2020, 588, 315-320.	27.8	1,035
61	Why and How Vaccines Work. Cell, 2020, 183, 290-295.	28.9	98
62	Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nature Microbiology, 2020, 5, 1299-1305.	13.3	661
63	Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell, 2020, 183, 1312-1324.e10.	28.9	157
64	The Role of Immune Factors in Shaping Fetal Neurodevelopment. Annual Review of Cell and Developmental Biology, 2020, 36, 441-468.	9.4	14
65	Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature, 2020, 584, 463-469.	27.8	1,710
66	Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. Journal of Experimental Medicine, 2020, 217, .	8.5	357
67	RUNX Binding Sites Are Enriched in Herpesvirus Genomes, and RUNX1 Overexpression Leads to Herpes Simplex Virus 1 Suppression. Journal of Virology, 2020, 94, .	3.4	6
68	Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2. New England Journal of Medicine, 2020, 383, 1283-1286.	27.0	823
69	The Global Response to the COVID-19 Pandemic. Med, 2020, 1, 3-8.	4.4	11
70	Contributions of maternal and fetal antiviral immunity in congenital disease. Science, 2020, 368, 608-612.	12.6	57
71	Coast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the United States. Cell, 2020, 181, 990-996.e5.	28.9	321
72	m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development. Immunity, 2020, 52, 1007-1021.e8.	14.3	99

#	Article	IF	CITATIONS
73	Why does Japan have so few cases of COVIDâ€19?. EMBO Molecular Medicine, 2020, 12, e12481.	6.9	133
74	Type I and Type III Interferons – Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host and Microbe, 2020, 27, 870-878.	11.0	723
75	Vitamin B12 and folic acid alleviate symptoms of nutritional deficiency by antagonizing aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15837-15845.	7.1	28
76	Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19. Journal of Immunology, 2020, 205, 307-312.	0.8	213
77	Seasonality of Respiratory Viral Infections. Annual Review of Virology, 2020, 7, 83-101.	6.7	686
78	Cutting Edge: The Use of Topical Aminoglycosides as an Effective Pull in "Prime and Pull―Vaccine Strategy. Journal of Immunology, 2020, 204, 1703-1707.	0.8	17
79	VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature, 2020, 577, 689-694.	27.8	321
80	Antidote to toxic principal investigators. Nature Medicine, 2020, 26, 457-457.	30.7	7
81	The potential danger of suboptimal antibody responses in COVID-19. Nature Reviews Immunology, 2020, 20, 339-341.	22.7	447
82	Interferon deficiency can lead to severe COVID. Nature, 2020, 587, 374-376.	27.8	73
83	456. Implementing an At-Home Smell Test for Early Assessment of COVID-19 in High-Risk Healthcare Workers. Open Forum Infectious Diseases, 2020, 7, S295-S296.	0.9	2
84	SARS–CoV-2 infection of the placenta. Journal of Clinical Investigation, 2020, 130, 4947-4953.	8.2	387
85	Mouse Model of SARS-CoV-2 Reveals Inflammatory Role of Type I Interferon Signaling. SSRN Electronic Journal, 2020, , 3628297.	0.4	3
86	Method for Measuring Mucociliary Clearance and Cilia-generated Flow in Mice by ex vivo Imaging. Bio-protocol, 2020, 10, e3554.	0.4	2
87	Environmental Conditioning and Aerosol Infection of Mice. Bio-protocol, 2020, 10, e3592.	0.4	0
88	68. Active Monitoring of a Healthcare Worker Cohort During the COVID-19 Epidemic. Open Forum Infectious Diseases, 2020, 7, S165-S165.	0.9	0
89	Why we need to increase diversity in the immunology research community. Nature Immunology, 2019, 20, 1085-1088.	14.5	13
90	Successful application of prime and pull strategy for a therapeutic HSV vaccine. Npj Vaccines, 2019, 4, 33.	6.0	43

#	Article	IF	CITATIONS
91	Effector TH17 Cells Give Rise to Long-Lived TRM Cells that Are Essential for an Immediate Response against Bacterial Infection. Cell, 2019, 178, 1176-1188.e15.	28.9	111
92	Human APOBEC3G Prevents Emergence of Infectious Endogenous Retrovirus in Mice. Journal of Virology, 2019, 93, .	3.4	15
93	Rapid temporal improvement of pembrolizumab-induced pneumonitis using the anti-TNF-α antibody infliximab. Drug Discoveries and Therapeutics, 2019, 13, 164-167.	1.5	14
94	Intratumoral delivery of RIG-I agonist SLR14 induces robust antitumor responses. Journal of Experimental Medicine, 2019, 216, 2854-2868.	8.5	49
95	Ketogenic diet activates protective ^ĵ ³Î´T cell responses against influenza virus infection. Science Immunology, 2019, 4, .	11.9	98
96	Apobec3A maintains HIV-1 latency through recruitment of epigenetic silencing machinery to the long terminal repeat. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2282-2289.	7.1	35
97	The Lupus Susceptibility Locus Sgp3 Encodes the Suppressor of Endogenous Retrovirus Expression SNERV. Immunity, 2019, 50, 334-347.e9.	14.3	61
98	The Combination of MEK Inhibitor With Immunomodulatory Antibodies Targeting Programmed Death 1 and Programmed Death Ligand 1 Results in Prolonged Survival in Kras/p53-Driven Lung Cancer. Journal of Thoracic Oncology, 2019, 14, 1046-1060.	1.1	52
99	Migrant memory B cells secrete luminal antibody in the vagina. Nature, 2019, 571, 122-126.	27.8	77
100	Monocytes Inadequately Fill In for Meningeal Macrophages. Trends in Immunology, 2019, 40, 463-465.	6.8	6
101	Low ambient humidity impairs barrier function and innate resistance against influenza infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10905-10910.	7.1	235
102	Aedes aegypti AgBR1 antibodies modulate early Zika virus infection of mice. Nature Microbiology, 2019, 4, 948-955.	13.3	43
103	YTHDF1 Control of Dendritic Cell Cross-Priming as a Possible Target of Cancer Immunotherapy. Biochemistry, 2019, 58, 1945-1946.	2.5	17
104	RIG-I Selectively Discriminates against 5′-Monophosphate RNA. Cell Reports, 2019, 26, 2019-2027.e4.	6.4	43
105	Murine Leukemia Virus Exploits Innate Sensing by Toll-Like Receptor 7 in B-1 Cells To Establish Infection and Locally Spread in Mice. Journal of Virology, 2019, 93, .	3.4	7
106	RIG-I Recognition of RNA Targets: The Influence of Terminal Base Pair Sequence and Overhangs on Affinity and Signaling. Cell Reports, 2019, 29, 3807-3815.e3.	6.4	15
107	Reply to Iñiguez et al.: ERVmap is a validated approach to mapping proviral endogenous retroviruses in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21352-21353.	7.1	2
108	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	28.9	6

#	Article	IF	CITATIONS
109	Application of a Modified Smart-seq2 Sample Preparation Protocol for Rare Cell Full-length Single-cell mRNA Sequencing to Mouse Oocytes. Bio-protocol, 2019, 9, e3345.	0.4	1
110	Loss of METTL3 Mediated m6A RNA Modification Results in Double-Stranded RNA Induced Innate Immune Response and Hematopoietic Failure. Blood, 2019, 134, 450-450.	1.4	0
111	A minimal RNA ligand for potent RIG-I activation in living mice. Science Advances, 2018, 4, e1701854.	10.3	79
112	Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nature Microbiology, 2018, 3, 611-621.	13.3	80
113	Type I interferons instigate fetal demise after Zika virus infection. Science Immunology, 2018, 3, .	11.9	212
114	CD47 expression in Epstein-Barr virus-associated gastric carcinoma: coexistence with tumor immunity lowering the ratio of CD8+/Foxp3+ T cells. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2018, 472, 643-651.	2.8	12
115	Antiviral CD8 T cells induce Zika-virus-associated paralysis in mice. Nature Microbiology, 2018, 3, 141-147.	13.3	97
116	ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12565-12572.	7.1	134
117	Adenocarcinoma of the esophagogastric junction and its background mucosal pathology: A comparative analysis according to Siewert classification in a Japanese cohort. Cancer Medicine, 2018, 7, 5145-5154.	2.8	15
118	Interferons and Proinflammatory Cytokines in Pregnancy and Fetal Development. Immunity, 2018, 49, 397-412.	14.3	336
119	Regional Differences in Airway Epithelial Cells Reveal Tradeoff between Defense against Oxidative Stress and Defense against Rhinovirus. Cell Reports, 2018, 24, 3000-3007.e3.	6.4	46
120	KDM5 histone demethylases repress immune response via suppression of STING. PLoS Biology, 2018, 16, e2006134.	5.6	106
121	Critical role of CD4+ T cells and IFNÎ ³ signaling in antibody-mediated resistance to Zika virus infection. Nature Communications, 2018, 9, 3136.	12.8	64
122	An Antiviral Branch of the IL-1 Signaling Pathway Restricts Immune-Evasive Virus Replication. Molecular Cell, 2018, 71, 825-840.e6.	9.7	72
123	1 Type I Interferon Is Necessary and Sufficient for Alloimmunization to Transfused KEL-Expressing RBCs in Mice. American Journal of Clinical Pathology, 2018, 149, S163-S163.	0.7	0
124	The interaction between IKKÎ \pm and LC3 promotes type I interferon production through the TLR9-containing LAPosome. Science Signaling, 2018, 11, .	3.6	62
125	Zika virus causes testicular atrophy. Science Advances, 2017, 3, e1602899.	10.3	111
126	β-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares. Cell Reports, 2017, 18, 2077-2087.	6.4	271

#	Article	IF	CITATIONS
127	Immune Regulation of Antibody Access to Neuronal Tissues. Trends in Molecular Medicine, 2017, 23, 227-245.	6.7	48
128	TAM Receptors Are Not Required for Zika Virus Infection in Mice. Cell Reports, 2017, 19, 558-568.	6.4	125
129	Gastric Cancer With Primitive Enterocyte Phenotype. American Journal of Surgical Pathology, 2017, 41, 989-997.	3.7	42
130	Fetal Growth Restriction Caused by Sexual Transmission of Zika Virus in Mice. Journal of Infectious Diseases, 2017, 215, 1720-1724.	4.0	44
131	Sensing Self and Foreign Circular RNAs by Intron Identity. Molecular Cell, 2017, 67, 228-238.e5.	9.7	346
132	Type I IFN Is Necessary and Sufficient for Inflammation-Induced Red Blood Cell Alloimmunization in Mice. Journal of Immunology, 2017, 199, 1041-1050.	0.8	56
133	Essential role for GABARAP autophagy proteins in interferon-inducible GTPase-mediated host defense. Nature Immunology, 2017, 18, 899-910.	14.5	85
134	Zika virus targets blood monocytes. Nature Microbiology, 2017, 2, 1460-1461.	13.3	21
135	B cells require Type 1 interferon to produce alloantibodies to transfused KELâ€expressing red blood cells in mice. Transfusion, 2017, 57, 2595-2608.	1.6	32
136	RAB15 empowers dendritic cells to drive antiviral immunity. Science Immunology, 2017, 2, .	11.9	2
137	Aging impairs both primary and secondary RIG-I signaling for interferon induction in human monocytes. Science Signaling, 2017, 10, .	3.6	113
138	Early local immune defences in the respiratory tract. Nature Reviews Immunology, 2017, 17, 7-20.	22.7	244
139	The cellular endosomal protein stannin inhibits intracellular trafficking of human papillomavirus during virus entry. Journal of General Virology, 2017, 98, 2821-2836.	2.9	11
140	IRE1Î \pm promotes viral infection by conferring resistance to apoptosis. Science Signaling, 2017, 10, .	3.6	33
141	Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8496-8501.	7.1	54
142	Exploiting Mucosal Immunity for Antiviral Vaccines. Annual Review of Immunology, 2016, 34, 575-608.	21.8	109
143	Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help. Nature, 2016, 533, 552-556.	27.8	72
144	Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science, 2016, 352, 463-466.	12.6	210

#	Article	IF	CITATIONS
145	Antiviral responses of inbred mice. Nature Reviews Immunology, 2016, 16, 339-339.	22.7	4
146	Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection. Cell, 2016, 166, 1247-1256.e4.	28.9	347
147	CD301b + Mononuclear Phagocytes Maintain Positive Energy Balance through Secretion of Resistin-like Molecule Alpha. Immunity, 2016, 45, 583-596.	14.3	44
148	CD301b+ dendritic cells stimulate tissue-resident memory CD8+ T cells to protect against genital HSV-2. Nature Communications, 2016, 7, 13346.	12.8	74
149	Viral Spread to Enteric Neurons Links Genital HSV-1 Infection to Toxic Megacolon and Lethality. Cell Host and Microbe, 2016, 19, 788-799.	11.0	58
150	CD301b+ Macrophages Are Essential forÂEffective Skin Wound Healing. Journal of Investigative Dermatology, 2016, 136, 1885-1891.	0.7	111
151	O-linked sugars sound the alarm. Nature Immunology, 2016, 17, 119-120.	14.5	0
152	Autophagy Snuffs a Macrophage's Inner Fire. Cell Host and Microbe, 2016, 19, 9-11.	11.0	2
153	AXL receptor tyrosine kinase is required for T cell priming and antiviral immunity. ELife, 2016, 5, .	6.0	54
154	CD301b+ dendritic cells suppress T follicular helper cells and antibody responses to protein antigens. ELife, 2016, 5, .	6.0	40
155	Type 1 Interferon Regulates Inflammation Associated RBC Alloimmunization By Promoting Monocyte-Derived Dendritic Cell Erythrophagocytosis in Mice. Blood, 2016, 128, 19-19.	1.4	0
156	No Viral Association Found in a Set of Differentiated Vulvar Intraepithelial Neoplasia Cases by Human Papillomavirus and Pan-Viral Microarray Testing. PLoS ONE, 2015, 10, e0125292.	2.5	8
157	Cervicovaginal Microbiota: Simple Is Better. Immunity, 2015, 42, 790-791.	14.3	25
158	Mucosal Dendritic Cells. , 2015, , 489-541.		4
159	Tissue instruction for migration and retention of TRM cells. Trends in Immunology, 2015, 36, 556-564.	6.8	97
160	Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 827-832.	7.1	199
161	Candida albicans Morphology and Dendritic Cell Subsets Determine T Helper Cell Differentiation. Immunity, 2015, 42, 356-366.	14.3	182
162	Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 2015, 520, 553-557.	27.8	1,255

#	Article	IF	CITATIONS
163	Balancing family life with a science career. Nature Immunology, 2015, 16, 787-790.	14.5	7
164	Control of adaptive immunity by the innate immune system. Nature Immunology, 2015, 16, 343-353.	14.5	1,481
165	Toll-like receptor 9 trafficking and signaling for type I interferons requires PIKfyve activity. International Immunology, 2015, 27, 435-445.	4.0	22
166	Application of the Proximity-Dependent Assay and Fluorescence Imaging Approaches to Study Viral Entry Pathways. Methods in Molecular Biology, 2015, 1270, 437-451.	0.9	22
167	Epigenetic Reprogramming of the Type III Interferon Response Potentiates Antiviral Activity and Suppresses Tumor Growth. PLoS Biology, 2014, 12, e1001758.	5.6	50
168	Apoptotic Caspases Prevent the Induction of Type I Interferons by Mitochondrial DNA. Cell, 2014, 159, 1563-1577.	28.9	625
169	Alternative Capture of Noncoding RNAs or Protein-Coding Genes by Herpesviruses to Alter Host T Cell Function. Molecular Cell, 2014, 54, 67-79.	9.7	55
170	Innate immunity to influenza virus infection. Nature Reviews Immunology, 2014, 14, 315-328.	22.7	839
171	A Promiscuous Lipid-Binding Protein Diversifies the Subcellular Sites of Toll-like Receptor Signal Transduction. Cell, 2014, 156, 705-716.	28.9	192
172	Poliomyelitis in transgenic mice expressing CD155 under the control of the Tage4 promoter after oral and parenteral poliovirus inoculation. Journal of General Virology, 2014, 95, 1668-1676.	2.9	11
173	A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science, 2014, 346, 93-98.	12.6	353
174	Generating protective immunity against genital herpes. Trends in Immunology, 2013, 34, 487-494.	6.8	43
175	ELF4 is critical for induction of type I interferon and the host antiviral response. Nature Immunology, 2013, 14, 1237-1246.	14.5	89
176	CD301b+ Dermal Dendritic Cells Drive T Helper 2 Cell-Mediated Immunity. Immunity, 2013, 39, 733-743.	14.3	328
177	Tissueâ€resident memory T cells. Immunological Reviews, 2013, 255, 165-181.	6.0	169
178	High-risk human papillomavirus E6 inhibits monocyte differentiation to Langerhans cells. Virology, 2013, 444, 257-262.	2.4	24
179	IL-1R signaling in dendritic cells replaces pattern-recognition receptors in promoting CD8+ T cell responses to influenza A virus. Nature Immunology, 2013, 14, 246-253.	14.5	122
180	Parvovirus evades interferon-dependent viral control in primary mouse embryonic fibroblasts. Virology, 2013, 442, 20-27.	2.4	21

#	Article	IF	CITATIONS
181	Toll-Like Receptor 9 in Plasmacytoid Dendritic Cells Fails To Detect Parvoviruses. Journal of Virology, 2013, 87, 3605-3608.	3.4	14
182	Autophagy and selective deployment of Atg proteins in antiviral defense. International Immunology, 2013, 25, 1-10.	4.0	39
183	Cell type-dependent requirement of autophagy in HSV-1 antiviral defense. Autophagy, 2013, 9, 236-238.	9.1	23
184	Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIC-I. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13910-13915.	7.1	66
185	Nitric Oxide and TNFα Are Critical Regulators of Reversible Lymph Node Vascular Remodeling and Adaptive Immune Response. PLoS ONE, 2013, 8, e60741.	2.5	9
186	Different routes to the same destination. ELife, 2013, 2, e00572.	6.0	3
187	Skin TRM mediates distributed border patrol. Cell Research, 2012, 22, 1325-1327.	12.0	1
188	Playmate robots that can act according to a child's mental state. , 2012, , .		15
189	Innate Immune Recognition of HIV-1. Immunity, 2012, 37, 389-398.	14.3	68
190	Noncanonical Autophagy Is Required for Type I Interferon Secretion in Response to DNA-Immune Complexes. Immunity, 2012, 37, 986-997.	14.3	315
191	A Neuron-Specific Role for Autophagy in Antiviral Defense against Herpes Simplex Virus. Cell Host and Microbe, 2012, 12, 334-345.	11.0	136
192	Adaptor Protein-3 in Dendritic Cells Facilitates Phagosomal Toll-like Receptor Signaling and Antigen Presentation to CD4+ T Cells. Immunity, 2012, 36, 782-794.	14.3	70
193	MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice. Nature Communications, 2012, 3, 1120.	12.8	133
194	A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature, 2012, 491, 463-467.	27.8	518
195	A Virological View of Innate Immune Recognition. Annual Review of Microbiology, 2012, 66, 177-196.	7.3	176
196	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
197	Unique features of antiviral immune system of the vaginal mucosa. Current Opinion in Immunology, 2012, 24, 411-416.	5.5	60
198	Control of antiviral immunity by pattern recognition and the microbiome. Immunological Reviews, 2012, 245, 209-226.	6.0	87

#	Article	IF	CITATIONS
199	Phagosome as the Organelle Linking Innate and Adaptive Immunity. Traffic, 2012, 13, 1053-1061.	2.7	59
200	Autophagy in the control and pathogenesis of viral infection. Current Opinion in Virology, 2011, 1, 196-203.	5.4	59
201	A New Shield for a Cytokine Storm. Cell, 2011, 146, 861-862.	28.9	37
202	Inflammasomes as mediators of immunity against influenza virus. Trends in Immunology, 2011, 32, 34-41.	6.8	144
203	Mitoxosome: a mitochondrial platform for crossâ€ŧalk between cellular stress and antiviral signaling. Immunological Reviews, 2011, 243, 215-234.	6.0	32
204	Genome–virome interactions: examining the role of common viral infections in complex disease. Nature Reviews Microbiology, 2011, 9, 254-264.	28.6	117
205	Love Triangle between Unc93B1, TLR7, and TLR9 Prevents Fatal Attraction. Immunity, 2011, 35, 3-5.	14.3	10
206	Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proceedings of the United States of America, 2011, 108, 284-289.	7.1	167
207	CD4 ⁺ T cells support cytotoxic T lymphocyte priming by controlling lymph node input. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8749-8754.	7.1	80
208	Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5354-5359.	7.1	1,224
209	In Vivo Requirement for Atg5 in Antigen Presentation by Dendritic Cells. Immunity, 2010, 32, 227-239.	14.3	425
210	Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nature Immunology, 2010, 11, 404-410.	14.5	544
211	Antiviral immune responses in the genital tract: clues for vaccines. Nature Reviews Immunology, 2010, 10, 699-711.	22.7	152
212	CD8+ T Cell Responses following Replication-Defective Adenovirus Serotype 5 Immunization Are Dependent on CD11c+ Dendritic Cells but Show Redundancy in Their Requirement of TLR and Nucleotide-Binding Oligomerization Domain-Like Receptor Signaling. Journal of Immunology, 2010, 185, 1513-1521.	0.8	66
213	Bifurcation of Toll-Like Receptor 9 Signaling by Adaptor Protein 3. Science, 2010, 329, 1530-1534.	12.6	328
214	Regulation of Adaptive Immunity by the Innate Immune System. Science, 2010, 327, 291-295.	12.6	1,762
215	Regulation of Immature Dendritic Cell Migration by RhoA Guanine Nucleotide Exchange Factor Arhgef5. Journal of Biological Chemistry, 2009, 284, 28599-28606.	3.4	56
216	Cholera toxin inhibits IL-12 production and CD8α+ dendritic cell differentiation by cAMP-mediated inhibition of IRF8 function. Journal of Experimental Medicine, 2009, 206, 1227-1235.	8.5	53

#	Article	IF	CITATIONS
217	Autophagic control of RLR signaling. Autophagy, 2009, 5, 749-750.	9.1	26
218	Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2770-2775.	7.1	501
219	Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection. Journal of Experimental Medicine, 2009, 206, 359-370.	8.5	137
220	CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature, 2009, 462, 510-513.	27.8	495
221	Local advantage: skin DCs prime; skin memory T cells protect. Nature Immunology, 2009, 10, 451-453.	14.5	6
222	Inflammasome recognition of influenza virus is essential for adaptive immune responses. Journal of Experimental Medicine, 2009, 206, 79-87.	8.5	605
223	Autophagy and Innate Recognition Systems. Current Topics in Microbiology and Immunology, 2009, 335, 107-121.	1.1	26
224	Autophagy and antiviral immunity. Current Opinion in Immunology, 2008, 20, 23-29.	5.5	95
225	Toll-like receptors regulation of viral infection and diseaseâ~†. Advanced Drug Delivery Reviews, 2008, 60, 786-794.	13.7	73
226	Innate sensors of influenza virus: clues to developing better intranasal vaccines. Expert Review of Vaccines, 2008, 7, 1435-1445.	4.4	36
227	Ezrin is a key element in the human vagina. Maturitas, 2008, 60, 31-41.	2.4	15
228	Securing Mucosal Borders—Migrant Monocytes to the Rescue. Cell Host and Microbe, 2008, 4, 192-194.	11.0	0
229	The autophagy gene <i>ATG5</i> plays an essential role in B lymphocyte development. Autophagy, 2008, 4, 309-314.	9.1	314
230	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
231	Dendritic cells and B cells maximize mucosal Th1 memory response to herpes simplex virus. Journal of Experimental Medicine, 2008, 205, 3041-3052.	8.5	138
232	Nonmucosal Alphavirus Vaccination Stimulates a Mucosal Inductive Environment in the Peripheral Draining Lymph Node. Journal of Immunology, 2008, 181, 574-585.	0.8	25
233	Dendritic cells and macrophages in the genitourinary tract. Mucosal Immunology, 2008, 1, 451-459.	6.0	76
234	Epithelial dendritic cells in vagina rapidly renew from bone marrow precursors. FASEB Journal, 2008, 22, 851.7.	0.5	0

AKIKO IWASAKI

#	Article	IF	CITATIONS
235	In vivo requirement for autophagy in antigen presentation by dendritic cells. FASEB Journal, 2008, 22, 1068.13.	0.5	0
236	T helper dependent CTL migration into the vaginal mucosa. FASEB Journal, 2008, 22, 852.5.	0.5	0
237	Vaginal epithelial dendritic cells renew from bone marrow precursors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19061-19066.	7.1	78
238	Role of Autophagy in Innate Viral Recognition. Autophagy, 2007, 3, 354-356.	9.1	32
239	Innate control of adaptive immunity: Dendritic cells and beyond. Seminars in Immunology, 2007, 19, 48-55.	5.6	148
240	Division of Labor by Dendritic Cells. Cell, 2007, 128, 435-436.	28.9	7
241	Autophagy-Dependent Viral Recognition by Plasmacytoid Dendritic Cells. Science, 2007, 315, 1398-1401.	12.6	802
242	Mucosal Dendritic Cells. Annual Review of Immunology, 2007, 25, 381-418.	21.8	477
243	The Use of Bone Marrow-Chimeric Mice in Elucidating Immune Mechanisms. , 2006, 127, 281-292.		5
244	Cutting Edge: Plasmacytoid Dendritic Cells Provide Innate Immune Protection against Mucosal Viral Infection In Situ. Journal of Immunology, 2006, 177, 7510-7514.	0.8	164
245	Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17343-17348.	7.1	247
246	A crucial role for plasmacytoid dendritic cells in antiviral protection by CpG ODN-based vaginal microbicide. Journal of Clinical Investigation, 2006, 116, 2237-2243.	8.2	46
247	Intestinal epithelial barrier and mucosal immunity. Cellular and Molecular Life Sciences, 2005, 62, 1333-1338.	5.4	53
248	Innate control of adaptive immunity via remodeling of lymph node feed arteriole. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16315-16320.	7.1	141
249	From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16274-16279.	7.1	107
250	MAdCAM-1 Expressing Sacral Lymph Node in the Lymphotoxin Î ² -Deficient Mouse Provides a Site for Immune Generation Following Vaginal Herpes Simplex Virus-2 Infection. Journal of Immunology, 2004, 173, 1908-1913.	0.8	31
251	In Vivo Role of Nectin-1 in Entry of Herpes Simplex Virus Type 1 (HSV-1) and HSV-2 through the Vaginal Mucosa. Journal of Virology, 2004, 78, 2530-2536.	3.4	70
252	Toll-like receptor control of the adaptive immune responses. Nature Immunology, 2004, 5, 987-995.	14.5	3,662

#	Article	IF	CITATIONS
253	Involvement of Dendritic Cell Subsets in the Induction of Oral Tolerance and Immunity. Annals of the New York Academy of Sciences, 2004, 1029, 60-65.	3.8	35
254	Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5598-5603.	7.1	1,650
255	The role of dendritic cells in immune responses against vaginal infection by herpes simplex virus type 2. Microbes and Infection, 2003, 5, 1221-1230.	1.9	16
256	The Importance of CD11b+ Dendritic Cells in CD4+ T Cell Activation In Vivo. Journal of Experimental Medicine, 2003, 198, 185-190.	8.5	28
257	CD11b+ Peyer's Patch Dendritic Cells Secrete IL-6 and Induce IgA Secretion from Naive B Cells. Journal of Immunology, 2003, 171, 3684-3690.	0.8	222
258	Toll-like Receptor 9–mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells. Journal of Experimental Medicine, 2003, 198, 513-520.	8.5	1,064
259	CCL9 Is Secreted by the Follicle-Associated Epithelium and Recruits Dome Region Peyer's Patch CD11b+ Dendritic Cells. Journal of Immunology, 2003, 171, 2797-2803.	0.8	167
260	Vaginal Submucosal Dendritic Cells, but Not Langerhans Cells, Induce Protective Th1 Responses to Herpes Simplex Virus-2. Journal of Experimental Medicine, 2003, 197, 153-162.	8.5	364
261	The role of dendritic cells in the induction of oral tolerance and immunity. Japanese Journal of Clinical Immunology, 2003, 26, 200-200.	0.0	0
262	Expression of DC-SIGN by Dendritic Cells of Intestinal and Genital Mucosae in Humans and Rhesus Macaques. Journal of Virology, 2002, 76, 1866-1875.	3.4	243
263	Immunofluorescence Analysis of Poliovirus Receptor Expression in Peyer's Patches of Humans, Primates, andCD155Transgenic Mice: Implications for Poliovirus Infection. Journal of Infectious Diseases, 2002, 186, 585-592.	4.0	113
264	The CXC Chemokine Murine Monokine Induced by IFN-γ (CXC Chemokine Ligand 9) Is Made by APCs, Targets Lymphocytes Including Activated B Cells, and Supports Antibody Responses to a Bacterial Pathogen In Vivo. Journal of Immunology, 2002, 169, 1433-1443.	0.8	120
265	Unique Functions of CD11b+, CD8α+, and Double-Negative Peyer's Patch Dendritic Cells. Journal of Immunology, 2001, 166, 4884-4890.	0.8	393
266	Localization of Distinct Peyer's Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine. Journal of Experimental Medicine, 2000, 191, 1381-1394.	8.5	544
267	Primary Role for GI Protein Signaling in the Regulation of Interleukin 12 Production and the Induction of T Helper Cell Type 1 Responses. Journal of Experimental Medicine, 2000, 191, 1605-1610.	8.5	98
268	Freshly Isolated Peyer's Patch, but Not Spleen, Dendritic Cells Produce Interleukin 10 and Induce the Differentiation of T Helper Type 2 Cells. Journal of Experimental Medicine, 1999, 190, 229-240.	8.5	595
269	Induction by DNA immunization of a protective antitumor cytotoxic T lymphocyte response against a minimal-epitope-expressing tumor. Cancer Immunology, Immunotherapy, 1998, 45, 273-279.	4.2	29
270	Predominant Role for Directly Transfected Dendritic Cells in Antigen Presentation to CD8+ T Cells after Gene Gun Immunization. Journal of Experimental Medicine, 1998, 188, 1075-1082.	8.5	539

#	Article	IF	CITATIONS
271	Innate Immunity to Viruses. , 0, , 183-196.		Ο
272	Multiscale PHATE Exploration of SARS-CoV-2 Data Reveals Multimodal Signatures of Disease. SSRN Electronic Journal, 0, , .	0.4	1
273	Using social media to promote science. Nature Immunology, 0, , .	14.5	1