
Miguel Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6139219/publications.pdf Version: 2024-02-01

MICHELLODEZ

#	Article	IF	CITATIONS
1	Ghrelin. Molecular Metabolism, 2015, 4, 437-460.	6.5	810
2	Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine, 2010, 16, 1001-1008.	30.7	581
3	BMP8B Increases Brown Adipose Tissue Thermogenesis through Both Central and Peripheral Actions. Cell, 2012, 149, 871-885.	28.9	481
4	AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends in Molecular Medicine, 2008, 14, 539-549.	6.7	465
5	GLP-1 Agonism Stimulates Brown Adipose Tissue Thermogenesis and Browning Through Hypothalamic AMPK. Diabetes, 2014, 63, 3346-3358.	0.6	422
6	Hypothalamic Fatty Acid Metabolism Mediates the Orexigenic Action of Ghrelin. Cell Metabolism, 2008, 7, 389-399.	16.2	417
7	PPAR gamma 2 Prevents Lipotoxicity by Controlling Adipose Tissue Expandability and Peripheral Lipid Metabolism. PLoS Genetics, 2007, 3, e64.	3.5	346
8	Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK. Cell Metabolism, 2014, 20, 41-53.	16.2	342
9	The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nature Reviews Endocrinology, 2017, 13, 338-351.	9.6	304
10	Ablation of PGC-1β Results in Defective Mitochondrial Activity, Thermogenesis, Hepatic Function, and Cardiac Performance. PLoS Biology, 2006, 4, e369.	5.6	249
11	Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nature Reviews Endocrinology, 2016, 12, 421-432.	9.6	227
12	AMPK and PFKFB3 mediate glycolysis and survival inÂresponse to mitophagy during mitotic arrest. Nature Cell Biology, 2015, 17, 1304-1316.	10.3	223
13	Agouti-Related Peptide, Neuropeptide Y, and Somatostatin-Producing Neurons Are Targets for Ghrelin Actions in the Rat Hypothalamus. Endocrinology, 2003, 144, 544-551.	2.8	209
14	Central Ceramide-Induced Hypothalamic Lipotoxicity and ER Stress Regulate Energy Balance. Cell Reports, 2014, 9, 366-377.	6.4	195
15	The Mammalian Target of Rapamycin as Novel Central Regulator of Puberty Onset via Modulation of Hypothalamic Kiss1 System. Endocrinology, 2009, 150, 5016-5026.	2.8	194
16	Brain fatty acid synthase activates PPARα to maintain energy homeostasis. Journal of Clinical Investigation, 2007, 117, 2539-2552.	8.2	183
17	Leptin Regulation of Prepro-orexin and Orexin Receptor mRNA Levels in the Hypothalamus. Biochemical and Biophysical Research Communications, 2000, 269, 41-45.	2.1	179
18	Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance. Cell Metabolism, 2017, 26, 212-229.e12.	16.2	167

#	Article	IF	CITATIONS
19	Energy balance regulation by thyroid hormones at central level. Trends in Molecular Medicine, 2013, 19, 418-427.	6.7	164
20	Nicotine Induces Negative Energy Balance Through Hypothalamic AMP-Activated Protein Kinase. Diabetes, 2012, 61, 807-817.	0.6	147
21	Direct Control of Peripheral Lipid Deposition by CNS GLP-1 Receptor Signaling Is Mediated by the Sympathetic Nervous System and Blunted in Diet-Induced Obesity. Journal of Neuroscience, 2009, 29, 5916-5925.	3.6	144
22	Tamoxifen-Induced Anorexia Is Associated With Fatty Acid Synthase Inhibition in the Ventromedial Nucleus of the Hypothalamus and Accumulation of Malonyl-CoA. Diabetes, 2006, 55, 1327-1336.	0.6	143
23	Hypothalamic-autonomic control of energy homeostasis. Endocrine, 2015, 50, 276-291.	2.3	142
24	The Central Sirtuin 1/p53 Pathway Is Essential for the Orexigenic Action of Ghrelin. Diabetes, 2011, 60, 1177-1185.	0.6	133
25	Hypothalamic fatty acid metabolism: A housekeeping pathway that regulates food intake. BioEssays, 2007, 29, 248-261.	2.5	127
26	Using brown adipose tissue to treat obesity – the central issue. Trends in Molecular Medicine, 2011, 17, 405-411.	6.7	127
27	Thyroid hormones induce browning of white fat. Journal of Endocrinology, 2017, 232, 351-362.	2.6	126
28	The brain and brown fat. Annals of Medicine, 2015, 47, 150-168.	3.8	124
29	The Opioid System and Food Intake: Homeostatic and Hedonic Mechanisms. Obesity Facts, 2012, 5, 196-207.	3.4	116
30	Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. FASEB Journal, 2010, 24, 2670-2679.	0.5	108
31	Hypothalamic levels of NPY, MCH, and preproâ€orexin mRNA during pregnancy and lactation in the rat: role of prolactin. FASEB Journal, 2003, 17, 1392-1400.	0.5	103
32	Estrogens and the control of energy homeostasis: a brain perspective. Trends in Endocrinology and Metabolism, 2015, 26, 411-421.	7.1	103
33	Central Resistin Regulates Hypothalamic and Peripheral Lipid Metabolism in a Nutritional-Dependent Fashion. Endocrinology, 2008, 149, 4534-4543.	2.8	102
34	A Functional Link between AMPK and Orexin Mediates the Effect of BMP8B on Energy Balance. Cell Reports, 2016, 16, 2231-2242.	6.4	102
35	A possible role of neuropeptide Y, agouti-related protein and leptin receptor isoforms in hypothalamic programming by perinatal feeding in the rat. Diabetologia, 2005, 48, 140-148.	6.3	101
36	Hypothalamic mTOR Signaling Mediates the Orexigenic Action of Ghrelin. PLoS ONE, 2012, 7, e46923.	2.5	101

#	Article	IF	CITATIONS
37	Olanzapine-Induced Hyperphagia and Weight Gain Associate with Orexigenic Hypothalamic Neuropeptide Signaling without Concomitant AMPK Phosphorylation. PLoS ONE, 2011, 6, e20571.	2.5	101
38	Role of ghrelin in reproduction. Reproduction, 2007, 133, 531-540.	2.6	99
39	Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance. Molecular Metabolism, 2016, 5, 271-282.	6.5	96
40	Central Ghrelin Regulates Peripheral Lipid Metabolism in a Growth Hormone-Independent Fashion. Endocrinology, 2009, 150, 4562-4574.	2.8	94
41	Irisin, Two Years Later. International Journal of Endocrinology, 2013, 2013, 1-8.	1.5	94
42	Hypothalamic mTOR pathway mediates thyroid hormoneâ€induced hyperphagia in hyperthyroidism. Journal of Pathology, 2012, 227, 209-222.	4.5	93
43	Current Understanding of the Hypothalamic Ghrelin Pathways Inducing Appetite and Adiposity. Trends in Neurosciences, 2017, 40, 167-180.	8.6	92
44	Hypothalamic Control of Lipid Metabolism: Focus on Leptin, Ghrelin and Melanocortins. Neuroendocrinology, 2011, 94, 1-11.	2.5	90
45	Reduction of Hypothalamic Endoplasmic Reticulum Stress Activates Browning of White Fat and Ameliorates Obesity. Diabetes, 2017, 66, 87-99.	0.6	90
46	Transcript and metabolite analysis of the effects of tamoxifen in rat liver reveals inhibition of fatty acid synthesis in the presence of hepatic steatosis. FASEB Journal, 2005, 19, 1108-1119.	0.5	87
47	Hypothalamic Ceramide Levels Regulated by CPT1C Mediate the Orexigenic Effect of Ghrelin. Diabetes, 2013, 62, 2329-2337.	0.6	82
48	Hypothalamic mTOR: The Rookie Energy Sensor. Current Molecular Medicine, 2014, 14, 3-21.	1.3	82
49	Hypothalamus and thermogenesis: Heating the BAT, browning the WAT. Molecular and Cellular Endocrinology, 2016, 438, 107-115.	3.2	80
50	Central regulation of energy metabolism by estrogens. Molecular Metabolism, 2018, 15, 104-115.	6.5	80
51	Central Melanin-Concentrating Hormone Influences Liver and Adipose Metabolism Via Specific Hypothalamic Nuclei and Efferent Autonomic/JNK1 Pathways. Gastroenterology, 2013, 144, 636-649.e6.	1.3	79
52	Nicotine Improves Obesity and Hepatic Steatosis and ER Stress in Diet-Induced Obese Male Rats. Endocrinology, 2014, 155, 1679-1689.	2.8	79
53	Pharmacological Inhibition of PI3K Reduces Adiposity and Metabolic Syndrome in Obese Mice and Rhesus Monkeys. Cell Metabolism, 2015, 21, 558-570.	16.2	79
54	Hypothalamic <scp>AMPK</scp> and energy balance. European Journal of Clinical Investigation, 2018, 48, e12996.	3.4	78

#	Article	IF	CITATIONS
55	Adaptive Changes of the Insig1/SREBP1/SCD1 Set Point Help Adipose Tissue to Cope With Increased Storage Demands of Obesity. Diabetes, 2013, 62, 3697-3708.	0.6	76
56	Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not Contribute to Thermogenesis and Glucose Consumption. Cell Reports, 2019, 27, 3385-3400.e3.	6.4	76
57	Peripheral tissue–brain interactions in the regulation of food intake. Proceedings of the Nutrition Society, 2007, 66, 131-155.	1.0	74
58	Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway. Redox Biology, 2017, 12, 854-863.	9.0	74
59	Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic–pituitary axes). Frontiers in Neuroendocrinology, 2010, 31, 113-127.	5.2	73
60	Influence of chronic undernutrition and leptin on GOAT mRNA levels in rat stomach mucosa. Journal of Molecular Endocrinology, 2008, 41, 415-421.	2.5	72
61	Orexin 1 Receptor Messenger Ribonucleic Acid Expression and Stimulation of Testosterone Secretion by Orexin-A in Rat Testis. Endocrinology, 2004, 145, 2297-2306.	2.8	71
62	Olanzapine, but not aripiprazole, weight-independently elevates serum triglycerides and activates lipogenic gene expression in female rats. International Journal of Neuropsychopharmacology, 2012, 15, 163-179.	2.1	69
63	Estradiol Regulates Energy Balance by Ameliorating Hypothalamic Ceramide-Induced ER Stress. Cell Reports, 2018, 25, 413-423.e5.	6.4	68
64	Acute effects of orexigenic antipsychotic drugs on lipid and carbohydrate metabolism in rat. Psychopharmacology, 2012, 219, 783-794.	3.1	67
65	Ghrelin and lipid metabolism: key partners in energy balance. Journal of Molecular Endocrinology, 2011, 46, R43-63.	2.5	65
66	Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Reviews in Endocrine and Metabolic Disorders, 2011, 12, 127-140.	5.7	64
67	Cellular Localization of Orexin Receptors in Human Pituitary*. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1616-1619.	3.6	63
68	Proopiomelanocortin-Deficient Mice Are Hypersensitive to the Adverse Metabolic Effects of Glucocorticoids. Diabetes, 2005, 54, 2269-2276.	0.6	63
69	Neuropeptide Y, but Not Agouti-Related Peptide or Melanin-Concentrating Hormone, Is a Target Peptide for Orexin-A Feeding Actions in the Rat Hypothalamus. Neuroendocrinology, 2002, 75, 34-44.	2.5	61
70	Hypothalamic lipotoxicity and the metabolic syndrome. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 350-361.	2.4	60
71	Cellular Localization of Orexin Receptors in Human Pituitary. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1616-1619.	3.6	58
72	The endocannabinoid system: Role in glucose and energy metabolism. Pharmacological Research, 2009, 60, 93-98.	7.1	56

#	Article	IF	CITATIONS
73	Ghrelin Requires p53 to Stimulate Lipid Storage in Fat and Liver. Endocrinology, 2013, 154, 3671-3679.	2.8	56
74	Orexin A suppresses in vivo GH secretion. European Journal of Endocrinology, 2004, 150, 731-736.	3.7	55
75	Metabolic regulation of female puberty via hypothalamic AMPK–kisspeptin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10758-E10767.	7.1	55
76	EJE PRIZE 2017: Hypothalamic AMPK: a golden target against obesity?. European Journal of Endocrinology, 2017, 176, R235-R246.	3.7	53
77	Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment?. , 2017, 178, 109-122.		53
78	Bsx, a Novel Hypothalamic Factor Linking Feeding with Locomotor Activity, Is Regulated by Energy Availability. Endocrinology, 2008, 149, 3009-3015.	2.8	52
79	Sensing the fat: Fatty acid metabolism in the hypothalamus and the melanocortin system. Peptides, 2005, 26, 1753-1758.	2.4	51
80	Regulation of visceral adipose tissueâ€derived serine protease inhibitor by nutritional status, metformin, gender and pituitary factors in rat white adipose tissue. Journal of Physiology, 2009, 587, 3741-3750.	2.9	51
81	Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obesity Reviews, 2010, 11, 185-201.	6.5	50
82	Pregnancy Induces Resistance to the Anorectic Effect of Hypothalamic Malonyl-CoA and the Thermogenic Effect of Hypothalamic AMPK Inhibition in Female Rats. Endocrinology, 2015, 156, 947-960.	2.8	50
83	Central Ceramide Signaling Mediates Obesity-Induced Precocious Puberty. Cell Metabolism, 2020, 32, 951-966.e8.	16.2	49
84	SF1-Specific AMPKα1 Deletion Protects Against Diet-Induced Obesity. Diabetes, 2018, 67, 2213-2226.	0.6	48
85	Hypothalamic effects of thyroid hormones on metabolism. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 703-712.	4.7	47
86	Glucagon-Like Peptide 1 Analogs and their Effects on Pancreatic Islets. Trends in Endocrinology and Metabolism, 2016, 27, 304-318.	7.1	47
87	Uroguanylin Action in the Brain Reduces Weight Gain in Obese Mice via Different Efferent Autonomic Pathways. Diabetes, 2016, 65, 421-432.	0.6	47
88	Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience, 2020, 437, 215-239.	2.3	46
89	Perinatal overfeeding in rats results in increased levels of plasma leptin but unchanged cerebrospinal leptin in adulthood. International Journal of Obesity, 2007, 31, 371-377.	3.4	45
90	Hypothalamic GLP-1: the control of BAT thermogenesis and browning of white fat. Adipocyte, 2015, 4, 141-145.	2.8	45

#	Article	IF	CITATIONS
91	Hepatic p63 regulates steatosis via IKKβ/ER stress. Nature Communications, 2017, 8, 15111.	12.8	45
92	Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nature Metabolism, 2021, 3, 1415-1431.	11.9	45
93	Orexin-A regulates growth hormone-releasing hormone mRNA content in a nucleus-specific manner and somatostatin mRNA content in a growth hormone-dependent fashion in the rat hypothalamus. European Journal of Neuroscience, 2004, 19, 2080-2088.	2.6	44
94	Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance. Molecular Metabolism, 2015, 4, 961-970.	6.5	44
95	Hypothalamic dopamine signalling regulates brown fat thermogenesis. Nature Metabolism, 2019, 1, 811-829.	11.9	44
96	Longâ€ŧerm caloric restriction ameliorates deleterious effects of aging on white and brown adipose tissue plasticity. Aging Cell, 2019, 18, e12948.	6.7	43
97	Neuromedin S as Novel Putative Regulator of Luteinizing Hormone Secretion. Endocrinology, 2007, 148, 813-823.	2.8	42
98	Influence of Ghrelin and Growth Hormone Deficiency on AMPâ€Activated Protein Kinase and Hypothalamic Lipid Metabolism. Journal of Neuroendocrinology, 2010, 22, 543-556.	2.6	42
99	Olanzapine depot formulation in rat: a step forward in modelling antipsychotic-induced metabolic adverse effects. International Journal of Neuropsychopharmacology, 2014, 17, 91-104.	2.1	42
100	Ferritin regulates organismal energy balance and thermogenesis. Molecular Metabolism, 2019, 24, 64-79.	6.5	42
101	The Lâ€Î±â€Lysophosphatidylinositol/G Protein–Coupled Receptor 55 System Induces the Development of Nonalcoholic Steatosis and Steatohepatitis. Hepatology, 2021, 73, 606-624.	7.3	42
102	Prepro-orexin mRNA levels in the rat hypothalamus, and orexin receptors mRNA levels in the rat hypothalamus and adrenal gland are not influenced by the thyroid status. Neuroscience Letters, 2001, 300, 171-175.	2.1	41
103	Caffeine treatment regulates neuropeptide S system expression in the rat brain. Neuroscience Letters, 2006, 410, 47-51.	2.1	41
104	p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nature Communications, 2018, 9, 3432.	12.8	41
105	Hypothalamic κ-Opioid Receptor Modulates the Orexigenic Effect of Ghrelin. Neuropsychopharmacology, 2013, 38, 1296-1307.	5.4	40
106	The Gut Metagenome Changes in Parallel to Waist Circumference, Brain Iron Deposition, and Cognitive Function. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2962-2973.	3.6	40
107	The atypical cannabinoid Oâ€1602 stimulates food intake and adiposity in rats. Diabetes, Obesity and Metabolism, 2012, 14, 234-243.	4.4	39
108	3-lodothyronamine Induces Tail Vasodilation Through Central Action in Male Mice. Endocrinology, 2017, 158, 1977-1984.	2.8	39

#	Article	IF	CITATIONS
109	Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Frontiers in Endocrinology, 2019, 10, 830.	3.5	39
110	Female Nur77-Deficient Mice Show Increased Susceptibility to Diet-Induced Obesity. PLoS ONE, 2013, 8, e53836.	2.5	37
111	Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biology, 2020, 34, 101575.	9.0	36
112	O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nature Communications, 2021, 12, 5068.	12.8	36
113	Vaspin and amylin are expressed in human and rat placenta and regulated by nutritional status. Histology and Histopathology, 2009, 24, 979-90.	0.7	35
114	Cellular Localization of Orexin Receptors in Human Pituitary*. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3444-3447.	3.6	34
115	Liver-specific deletion of insulin receptor substrate 2 does not impair hepatic glucose and lipid metabolism in mice. Diabetologia, 2006, 49, 552-561.	6.3	34
116	Resistin: Regulation of Food Intake, Glucose Homeostasis and Lipid Metabolism. Endocrine Development, 2009, 17, 175-184.	1.3	34
117	MCH Regulates SIRT1/FoxO1 and Reduces POMC Neuronal Activity to Induce Hyperphagia, Adiposity, and Glucose Intolerance. Diabetes, 2019, 68, 2210-2222.	0.6	34
118	Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nature Reviews Endocrinology, 2021, 17, 745-755.	9.6	34
119	Role of caveolins in body weight and insulin resistance regulation. Trends in Endocrinology and Metabolism, 2007, 18, 177-182.	7.1	33
120	Nicotine treatment regulates neuropeptide S system expression in the rat brain. NeuroToxicology, 2007, 28, 1129-1135.	3.0	33
121	Genetic evidence for a role of the SREBP transcription system and lipid biosynthesis in schizophrenia and antipsychotic treatment. European Neuropsychopharmacology, 2017, 27, 589-598.	0.7	33
122	Glucagon, GLP-1 and Thermogenesis. International Journal of Molecular Sciences, 2019, 20, 3445.	4.1	33
123	Central nicotine induces browning through hypothalamic κ opioid receptor. Nature Communications, 2019, 10, 4037.	12.8	32
124	Thyroid status regulates CART but not AgRP mRNA levels in the rat hypothalamus. NeuroReport, 2002, 13, 1775-1779.	1.2	31
125	Orexins (hypocretins) actions on the GHRH/somatostatinâ€GH axis. Acta Physiologica, 2010, 198, 325-334.	3.8	31
126	Inhibition of carnitine palmitoyltransferase 1A in hepatic stellate cells protects against fibrosis. Journal of Hepatology, 2022, 77, 15-28.	3.7	31

#	Article	IF	CITATIONS
127	Brain Ceramide Metabolism in the Control of Energy Balance. Frontiers in Physiology, 2017, 8, 787.	2.8	30
128	Regulation of NR4A by nutritional status, gender, postnatal development and hormonal deficiency. Scientific Reports, 2014, 4, 4264.	3.3	29
129	Hypothalamic kappa opioid receptor mediates both dietâ€induced and melanin concentrating hormone–induced liver damage through inflammation and endoplasmic reticulum stress. Hepatology, 2016, 64, 1086-1104.	7.3	28
130	A brain-sparing diphtheria toxin for chemical genetic ablation of peripheral cell lineages. Nature Communications, 2017, 8, 14967.	12.8	28
131	Pharmacological stimulation of p53 with low-dose doxorubicin ameliorates diet-induced nonalcoholic steatosis and steatohepatitis. Molecular Metabolism, 2018, 8, 132-143.	6.5	28
132	"Mens Sana In Corpore Sano― Exercise and Hypothalamic ER Stress. PLoS Biology, 2010, 8, e1000464.	5.6	27
133	Regulation of GPR55 in rat white adipose tissue and serum LPI by nutritional status, gestation, gender and pituitary factors. Molecular and Cellular Endocrinology, 2014, 383, 159-169.	3.2	27
134	Obesity Paradox in Ischemic Stroke: Clinical and Molecular Insights. Translational Stroke Research, 2019, 10, 639-649.	4.2	27
135	CPT1C in the ventromedial nucleus of the hypothalamus is necessary for brown fat thermogenesis activation in obesity. Molecular Metabolism, 2019, 19, 75-85.	6.5	27
136	Review of Novel Aspects of the Regulation of Ghrelin Secretion. Current Drug Metabolism, 2014, 15, 398-413.	1.2	26
137	mTOR signaling in the arcuate nucleus of the hypothalamus mediates the anorectic action of estradiol. Journal of Endocrinology, 2018, 238, 177-186.	2.6	25
138	Deletion of iRhom2 protects against diet-induced obesity by increasing thermogenesis. Molecular Metabolism, 2020, 31, 67-84.	6.5	25
139	Hypothalamic AMPK as a possible target for energy balance-related diseases. Trends in Pharmacological Sciences, 2022, 43, 546-556.	8.7	25
140	Orexin Expression is Regulated by ?-Melanocyte-Stimulating Hormone. Journal of Neuroendocrinology, 2007, 19, 703-707.	2.6	24
141	Food intake regulating-neuropeptides are expressed and regulated through pregnancy and following food restriction in rat placenta. Reproductive Biology and Endocrinology, 2008, 6, 14.	3.3	24
142	Hypothalamic Lipids and the Regulation of Energy Homeostasis. Obesity Facts, 2009, 2, 1-1.	3.4	24
143	Orexins (hypocretins) and energy balance: More than feeding. Molecular and Cellular Endocrinology, 2015, 418, 17-26.	3.2	24
144	BMP8 and activated brown adipose tissue in human newborns. Nature Communications, 2021, 12, 5274.	12.8	24

#	Article	IF	CITATIONS
145	Expression of neuropeptide W in rat stomach mucosa: Regulation by nutritional status, glucocorticoids and thyroid hormones. Regulatory Peptides, 2008, 146, 106-111.	1.9	23
146	The arcuate nucleus and neuropeptide Y contribute to the antitumorigenic effect of calorie restriction. Aging Cell, 2011, 10, 483-492.	6.7	23
147	Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice. Endocrinology, 2016, 157, 2735-2749.	2.8	23
148	Estradiol and brown fat. Best Practice and Research in Clinical Endocrinology and Metabolism, 2016, 30, 527-536.	4.7	23
149	Brain lipogenesis and regulation of energy metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 483-490.	2.5	22
150	AMPâ€activated protein kinase: â€~a cup of tea' against cholesterolâ€induced neurotoxicity. Journal of Pathology, 2010, 222, 329-334.	4.5	22
151	Angiopoietin-like protein 8/betatrophin as a new determinant of type 2 diabetes remission after bariatric surgery. Translational Research, 2017, 184, 35-44.e4.	5.0	22
152	Estradiol Regulation of Brown Adipose Tissue Thermogenesis. Advances in Experimental Medicine and Biology, 2017, 1043, 315-335.	1.6	22
153	ADAR1-Dependent RNA Editing Promotes MET and iPSC Reprogramming by Alleviating ER Stress. Cell Stem Cell, 2020, 27, 300-314.e11.	11.1	22
154	Compounds that modulate AMPK activity and hepatic steatosis impact the biosynthesis of microRNAs required to maintain lipid homeostasis in hepatocytes. EBioMedicine, 2020, 53, 102697.	6.1	22
155	New Insights in Ghrelin Orexigenic Effect. Frontiers of Hormone Research, 2010, 38, 196-205.	1.0	21
156	Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP. Molecular Metabolism, 2014, 3, 441-451.	6.5	21
157	Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance. Biochemical Journal, 2016, 473, 4063-4082.	3.7	20
158	Nicotine' actions on energy balance: Friend or foe?. , 2021, 219, 107693.		20
159	Effects of Neonatal Programming on Hypothalamic Mechanisms Controlling Energy Balance. Hormone and Metabolic Research, 2013, 45, 935-944.	1.5	19
160	Similarities between acylcarnitine profiles in large for gestational age newborns and obesity. Scientific Reports, 2017, 7, 16267.	3.3	19
161	Lipopolysaccharide (LPS)-induced septic shock causes profound changes in myocardial energy metabolites in pigs. Metabolomics, 2018, 14, 131.	3.0	19
162	Clinical, Cellular, and Molecular Evidence of the Additive Antitumor Effects of Biguanides and Statins in Prostate Cancer. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e696-e710.	3.6	19

#	Article	IF	CITATIONS
163	Gastrointestinal peptides controlling body weight homeostasis. General and Comparative Endocrinology, 2008, 155, 481-495.	1.8	18
164	Adiponectin receptor 2 is regulated by nutritional status, leptin and pregnancy in a tissue-specific manner. Physiology and Behavior, 2010, 99, 91-99.	2.1	18
165	Central manipulation of dopamine receptors attenuates the orexigenic action of ghrelin. Psychopharmacology, 2013, 229, 275-283.	3.1	18
166	Molecular mechanisms of appetite and obesity: a role for brain AMPK. Clinical Science, 2016, 130, 1697-1709.	4.3	18
167	Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation. Neuropharmacology, 2016, 110, 322-332.	4.1	18
168	Hypothalamic Regulation of Liver and Muscle Nutrient Partitioning by Brain-Specific Carnitine Palmitoyltransferase 1C in Male Mice. Endocrinology, 2017, 158, 2226-2238.	2.8	18
169	Brain-Sparing Sympathofacilitators Mitigate Obesity without Adverse Cardiovascular Effects. Cell Metabolism, 2020, 31, 1120-1135.e7.	16.2	18
170	The kallikrein–kinin pathway as a mechanism for auto-control of brown adipose tissue activity. Nature Communications, 2020, 11, 2132.	12.8	18
171	Understanding the Effects of Antipsychotics on Appetite Control. Frontiers in Nutrition, 2021, 8, 815456.	3.7	17
172	Lack of Ovarian Secretions Reverts the Anabolic Action of Olanzapine in Female Rats. International Journal of Neuropsychopharmacology, 2017, 20, 1005-1012.	2.1	16
173	Hypothalamic Lipids: Key Regulators of Whole Body Energy Balance. Neuroendocrinology, 2017, 104, 398-411.	2.5	16
174	AMP-activated protein kinase (AMPK) signaling in GnRH neurons links energy status and reproduction. Metabolism: Clinical and Experimental, 2021, 115, 154460.	3.4	16
175	Thyroid wars: the rise of central actions. Trends in Endocrinology and Metabolism, 2021, 32, 659-671.	7.1	16
176	Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function. Journal of Hepatology, 2022, 76, 11-24.	3.7	16
177	What is the real relevance of endogenous ghrelin?. Peptides, 2015, 70, 1-6.	2.4	15
178	Melanin-Concentrating Hormone acts through hypothalamic kappa opioid system and p70S6K to stimulate acute food intake. Neuropharmacology, 2018, 130, 62-70.	4.1	15
179	BBSome ablation in SF1 neurons causes obesity without comorbidities. Molecular Metabolism, 2021, 48, 101211.	6.5	15
180	The AMPK-Malonyl-CoA-CPT1 Axis in the Control of Hypothalamic Neuronal Function—Reply. Cell Metabolism, 2008, 8, 176.	16.2	14

#	Article	IF	CITATIONS
181	Hyperthyroidism differentially regulates neuropeptide S system in the rat brain. Brain Research, 2012, 1450, 40-48.	2.2	14
182	Myostatin expression is regulated by underfeeding and neonatal programming in rats. Journal of Physiology and Biochemistry, 2013, 69, 15-23.	3.0	14
183	Hypothalamic Leptin Resistance: From BBB to BBSome. PLoS Genetics, 2016, 12, e1005980.	3.5	14
184	AMPK Wars: the VMH Strikes Back, Return of the PVH. Trends in Endocrinology and Metabolism, 2018, 29, 135-137.	7.1	14
185	Genetic Targeting of GRP78 in the VMH Improves Obesity Independently of Food Intake. Genes, 2018, 9, 357.	2.4	14
186	Regulation of lipin1 by nutritional status, adiponectin, sex and pituitary function in rat white adipose tissue. Physiology and Behavior, 2012, 105, 777-783.	2.1	13
187	Acute but not chronic activation of brain glucagonâ€like peptideâ€l receptors enhances glucoseâ€stimulated insulin secretion in mice. Diabetes, Obesity and Metabolism, 2015, 17, 789-799.	4.4	13
188	Vogt-Koyanagi-Harada Disease Exacerbation Associated with COVID-19 Vaccine. Cells, 2022, 11, 1012.	4.1	13
189	Come to Where Insulin Resistance Is, Come to AMPK Country. Cell Metabolism, 2015, 21, 663-665.	16.2	12
190	Hypothalamic <scp>CDK</scp> 4 regulates thermogenesis by modulating sympathetic innervation of adipose tissues. EMBO Reports, 2020, 21, e49807.	4.5	12
191	Temperature but not leptin prevents semi-starvation induced hyperactivity in rats: implications for anorexia nervosa treatment. Scientific Reports, 2020, 10, 5300.	3.3	12
192	Regulation of Peroxisome Proliferator Activated Receptor-gamma in Rat Pituitary. Journal of Neuroendocrinology, 2005, 17, 292-297.	2.6	11
193	The Orexigenic Effect of Orexin-A Revisited: Dependence of an Intact Growth Hormone Axis. Endocrinology, 2013, 154, 3589-3598.	2.8	11
194	Lack of Hypophagia in CB1 Null Mice is Associated to Decreased Hypothalamic POMC and CART Expression. International Journal of Neuropsychopharmacology, 2015, 18, pyv011.	2.1	11
195	GPR55 and the regulation of glucose homeostasis. International Journal of Biochemistry and Cell Biology, 2017, 88, 204-207.	2.8	11
196	Reprint of: Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience, 2020, 447, 191-215.	2.3	11
197	κ-Opioid Signaling in the Lateral Hypothalamic Area Modulates Nicotine-Induced Negative Energy Balance. International Journal of Molecular Sciences, 2021, 22, 1515.	4.1	11
198	Activation of Hypothalamic <scp>AMPâ€Activated</scp> Protein Kinase Ameliorates Metabolic Complications of Experimental Arthritis. Arthritis and Rheumatology, 2022, 74, 212-222.	5.6	11

#	Article	IF	CITATIONS
199	Heterozygous Deficiency of Endoglin Decreases Insulin and Hepatic Triglyceride Levels during High Fat Diet. PLoS ONE, 2013, 8, e54591.	2.5	11
200	Ghrelin Causes a Decline in GABA Release by Reducing Fatty Acid Oxidation in Cortex. Molecular Neurobiology, 2018, 55, 7216-7228.	4.0	10
201	Impaired Ca 2+ handling in resistance arteries from genetically obese Zucker rats: Role of the PI3K, ERK1/2 and PKC signaling pathways. Biochemical Pharmacology, 2018, 152, 114-128.	4.4	10
202	Adipose tissue TSH as a new modulator of human adipocyte mitochondrial function. International Journal of Obesity, 2019, 43, 1611-1619.	3.4	10
203	Astrocyte Clocks and Glucose Homeostasis. Frontiers in Endocrinology, 2021, 12, 662017.	3.5	10
204	Central GLP-1 Actions on Energy Metabolism. Vitamins and Hormones, 2010, 84, 303-317.	1.7	9
205	Sequential Exposure to Obesogenic Factors in Females Rats: From Physiological Changes to Lipid Metabolism in Liver and Mesenteric Adipose Tissue. Scientific Reports, 2017, 7, 46194.	3.3	9
206	Sirt3 in POMC neurons controls energy balance in a sex- and diet-dependent manner. Redox Biology, 2021, 41, 101945.	9.0	9
207	Olfactomedin 2 deficiency protects against diet-induced obesity. Metabolism: Clinical and Experimental, 2022, 129, 155122.	3.4	9
208	Ceramide sensing in the hippocampus: The lipostatic theory and Ockham's razor. Molecular Metabolism, 2014, 3, 90-91.	6.5	8
209	Hypothalamic GRP78, a new target against obesity?. Adipocyte, 2018, 7, 63-66.	2.8	8
210	Uroguanylin Improves Leptin Responsiveness in Diet-Induced Obese Mice. Nutrients, 2019, 11, 752.	4.1	8
211	Oral Pharmacological Activation of Hypothalamic Guanylate Cyclase 2C Receptor Stimulates Brown Fat Thermogenesis to Reduce Body Weight. Neuroendocrinology, 2020, 110, 1042-1054.	2.5	8
212	Differential Role of Hypothalamic AMPKα Isoforms in Fish: an Evolutive Perspective. Molecular Neurobiology, 2019, 56, 5051-5066.	4.0	7
213	Hypothalamic AMPKα2 regulates liver energy metabolism in rainbow trout through vagal innervation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R122-R134.	1.8	7
214	Activity-Based Anorexia Induces Browning of Adipose Tissue Independent of Hypothalamic AMPK. Frontiers in Endocrinology, 2021, 12, 669980.	3.5	7
215	Kappa-Opioid Receptor Blockade Ameliorates Obesity Caused by Estrogen Withdrawal via Promotion of Energy Expenditure through mTOR Pathway. International Journal of Molecular Sciences, 2022, 23, 3118.	4.1	7
216	Lipoprotein Lipase Expression in Hypothalamus Is Involved in the Central Regulation of Thermogenesis and the Response to Cold Exposure. Frontiers in Endocrinology, 2018, 9, 103.	3.5	6

#	Article	IF	CITATIONS
217	Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Molecular Metabolism, 2022, 59, 101465.	6.5	6
218	Leptin and Fasting Regulate Rat Gastric Glucose-Regulated Protein 58. International Journal of Peptides, 2011, 2011, 1-11.	0.7	5
219	Adipose TSHB in Humans and Serum TSH in Hypothyroid Rats Inform About Cellular Senescence. Cellular Physiology and Biochemistry, 2018, 51, 142-153.	1.6	5
220	Increased FGF21 in brown adipose tissue of tyrosine hydroxylase heterozygous mice: implications for cold adaptation. Journal of Lipid Research, 2018, 59, 2308-2320.	4.2	5
221	Estradiol and appetite: To eat or not to eat. Molecular Metabolism, 2020, 42, 101061.	6.5	5
222	Activation of AMP kinase ameliorates kidney vascular dysfunction, oxidative stress and inflammation in rodent models of obesity. British Journal of Pharmacology, 2021, 178, 4085-4103.	5.4	5
223	Firing Up Brown Fat with Brain Amylin. Endocrinology, 2013, 154, 2263-2265.	2.8	4
224	Cellular energy sensors: AMPK and beyond. Molecular and Cellular Endocrinology, 2014, 397, 1-3.	3.2	4
225	Caloric Restriction Prevents Metabolic Dysfunction and the Changes in Hypothalamic Neuropeptides Associated with Obesity Independently of Dietary Fat Content in Rats. Nutrients, 2021, 13, 2128.	4.1	4
226	Hepatic p63 regulates glucose metabolism by repressing SIRT1. Gut, 2023, 72, 472-483.	12.1	4
227	C75, a Fatty Acid Synthase (FAS) Inhibitor. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2007, 1, 53-62.	0.6	3
228	Analyzing AMPK Function in the Hypothalamus. Methods in Molecular Biology, 2018, 1732, 433-448.	0.9	3
229	HYPOTHesizing about central comBAT against obesity. Journal of Physiology and Biochemistry, 2020, 76, 193-211.	3.0	3
230	AMPK-Dependent Mechanisms but Not Hypothalamic Lipid Signaling Mediates GH-Secretory Responses to GHRH and Ghrelin. Cells, 2020, 9, 1940.	4.1	3
231	Editorial: Hypocretins/Orexins. Frontiers in Endocrinology, 2020, 11, 357.	3.5	3
232	Ovarian insufficiency impairs glucose-stimulated insulin secretion through activation of hypothalamic de novo ceramide synthesis. Metabolism: Clinical and Experimental, 2021, 123, 154846.	3.4	3
233	BAT Expansion: A Panacea against Obesity? Lessons from LKB1. EBioMedicine, 2017, 24, 11-13.	6.1	2
234	UCP1 and T3: A key <i>"(un)coupleâ€</i> in energy balance. Temperature, 2017, 4, 18-20.	3.0	2

#	Article	IF	CITATIONS
235	Orally Induced Hyperthyroidism Regulates Hypothalamic AMP-Activated Protein Kinase. Nutrients, 2021, 13, 4204.	4.1	2
236	Effects of perinatal overfeeding on mechanisms controlling food intake and body weight homeostasis. Expert Review of Endocrinology and Metabolism, 2006, 1, 651-659.	2.4	1
237	Central Oxytocin and Energy Balance: More Than Feelings. Endocrinology, 2017, 158, 2713-2715.	2.8	1
238	Hypocretins in Endocrine Regulation. , 2005, , 395-423.		1
239	An updated view on human neonatal thermogenesis. Nature Reviews Endocrinology, 2022, , .	9.6	1
240	Estrogen wars: The activity awakens. Cell Metabolism, 2021, 33, 2309-2311.	16.2	1
241	Fatty Acids and Hypothalamic Dysfunction in Obesity. , 2016, , 557-582.		Ο
242	Central leptin and autonomic regulation: A melanocortin business. Molecular Metabolism, 2018, 8, 211-213.	6.5	0
243	Hypothalamic Control of Food Intake and Energy Homeostasis. , 2019, , 393-397.		0
244	The Central Nervous System in Metabolic Syndrome. , 2014, , 137-156.		0
245	Clinical Connections. Arthritis and Rheumatology, 2022, 74, .	5.6	0