Sanford J Shattil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6139025/publications.pdf Version: 2024-02-01

SANFORD | SHATTIL

#	Article	IF	CITATIONS
1	Talin Binding to Integrin Tails: A Final Common Step in Integrin Activation. Science, 2003, 302, 103-106.	12.6	1,079
2	The final steps of integrin activation: the end game. Nature Reviews Molecular Cell Biology, 2010, 11, 288-300.	37.0	888
3	Breaking the Integrin Hinge. Journal of Biological Chemistry, 1996, 271, 6571-6574.	3.4	518
4	Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood, 2004, 104, 1606-1615.	1.4	492
5	Src kinase activation by direct interaction with the integrin cytoplasmic domain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13298-13302.	7.1	487
6	Integrin regulation. Current Opinion in Cell Biology, 2005, 17, 509-516.	5.4	421
7	Reconstructing and Deconstructing Agonist-Induced Activation of Integrin αIIbβ3. Current Biology, 2006, 16, 1796-1806.	3.9	419
8	Integrins and Actin Filaments: Reciprocal Regulation of Cell Adhesion and Signaling. Journal of Biological Chemistry, 2000, 275, 22607-22610.	3.4	413
9	Coordinate interactions of Csk, Src, and Syk kinases with αllbβ3 initiate integrin signaling to the cytoskeleton. Journal of Cell Biology, 2002, 157, 265-275.	5.2	382
10	Integrin-based therapeutics: biological basis, clinical use and new drugs. Nature Reviews Drug Discovery, 2016, 15, 173-183.	46.4	324
11	The GPIIb/IIIa (integrin αIIbβ3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood, 2008, 112, 3011-3025.	1.4	310
12	An integrin αvβ3–c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nature Medicine, 2009, 15, 1163-1169.	30.7	250
13	Complementary Roles for Receptor Clustering and Conformational Change in the Adhesive and Signaling Functions of Integrin αllbβ3. Journal of Cell Biology, 1998, 141, 1685-1695.	5.2	224
14	Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12819-12824.	7.1	189
15	Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1. Current Biology, 1998, 8, 1289-1299.	3.9	183
16	Signaling through GP Ib-IX-V activates αIIbβ3 independently of other receptors. Blood, 2004, 103, 3403-3411.	1.4	170
17	Relationships between Rap1b, Affinity Modulation of Integrin αIIbβ3, and the Actin Cytoskeleton. Journal of Biological Chemistry, 2002, 277, 25715-25721.	3.4	165
18	Genetic and Pharmacological Analyses of Syk Function in IIbβ3 Signaling in Platelets. Blood, 1999, 93, 2645-2652.	1.4	162

SANFORD J SHATTIL

#	Article	IF	CITATIONS
19	Activation of Syk protein tyrosine kinase through interaction with integrin β cytoplasmic domains. Current Biology, 2001, 11, 1799-1804.	3.9	151
20	Mechanisms and Consequences of Affinity Modulation of Integrin αVβ3 Detected with a Novel Patch-engineered Monovalent Ligand. Journal of Biological Chemistry, 1999, 274, 21609-21616.	3.4	148
21	Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin αIIbβ3. Journal of Cell Biology, 2008, 181, 1211-1222.	5.2	145
22	Matrix-specific Suppression of Integrin Activation in Shear Stress Signaling. Molecular Biology of the Cell, 2006, 17, 4686-4697.	2.1	139
23	The Mechanism of Kindlin-Mediated Activation of Integrin αllbβ3. Current Biology, 2013, 23, 2288-2295.	3.9	131
24	Platelet integrins and immunoreceptors. Immunological Reviews, 2007, 218, 247-264.	6.0	123
25	The Classical Lancefield Antigen of Group A Streptococcus Is a Virulence Determinant with Implications for Vaccine Design. Cell Host and Microbe, 2014, 15, 729-740.	11.0	121
26	Integrins and Src: dynamic duo of adhesion signaling. Trends in Cell Biology, 2005, 15, 399-403.	7.9	116
27	The antithrombotic potential of selective blockade of talin-dependent integrin αIIbβ3 (platelet GPIIb–IIIa) activation. Journal of Clinical Investigation, 2007, 117, 2250-2259.	8.2	115
28	RhoA and the Function of Platelet Integrin \hat{I} ±Ilb \hat{I}^2 3. Blood, 1998, 91, 4206-4215.	1.4	113
29	The N-terminal SH2 Domains of Syk and ZAP-70 Mediate Phosphotyrosine-independent Binding to Integrin β Cytoplasmic Domains. Journal of Biological Chemistry, 2002, 277, 39401-39408.	3.4	110
30	Regulation of Outside-in Signaling in Platelets by Integrin-associated Protein Kinase Cβ. Journal of Biological Chemistry, 2005, 280, 644-653.	3.4	109
31	The Molecular Adapter SLP-76 Relays Signals from Platelet Integrin αIIbβ3 to the Actin Cytoskeleton. Journal of Biological Chemistry, 2001, 276, 5916-5923.	3.4	101
32	PTP-1B is an essential positive regulator of platelet integrin signaling. Journal of Cell Biology, 2005, 170, 837-845.	5.2	101
33	Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. Journal of Cell Science, 2011, 124, 879-891.	2.0	92
34	Differential Requirement for LAT and SLP-76 in GPVI versus T Cell Receptor Signaling. Journal of Experimental Medicine, 2002, 195, 705-717.	8.5	91
35	Specification of the Direction of Adhesive Signaling by the Integrin Î ² Cytoplasmic Domain. Journal of Biological Chemistry, 2005, 280, 29699-29707.	3.4	91
36	Primary Megakaryocytes Reveal a Role for Transcription Factor Nf-E2 in Integrin αiibβ3 Signaling. Journal of Cell Biology, 1999, 147, 1419-1430.	5.2	87

SANFORD J SHATTIL

#	Article	IF	CITATIONS
37	Evidence for the Requirement of ITAM Domains but Not SLP-76/Gads Interaction for Integrin Signaling in Hematopoietic Cells. Molecular and Cellular Biology, 2006, 26, 6936-6949.	2.3	84
38	Cyclic GMP and Protein Kinase G Control a Src-Containing Mechanosome in Osteoblasts. Science Signaling, 2010, 3, ra91.	3.6	80
39	Integrin αvβ3 Drives Slug Activation and Stemness in the Pregnant and Neoplastic Mammary Gland. Developmental Cell, 2014, 30, 295-308.	7.0	80
40	Detection of Integrin αIIbβ3Clustering in Living Cells. Journal of Biological Chemistry, 2003, 278, 15217-15224.	3.4	73
41	Proximal, selective, and dynamic interactions between integrin αIIbβ3 and protein tyrosine kinases in living cells. Journal of Cell Biology, 2004, 165, 305-311.	5.2	69
42	ADAP interactions with talin and kindlin promote platelet integrin αIlbβ3 activation and stable fibrinogen binding. Blood, 2014, 123, 3156-3165.	1.4	66
43	The Primacy of \hat{I}^21 Integrin Activation in the Metastatic Cascade. PLoS ONE, 2012, 7, e46576.	2.5	61
44	ADAP is required for normal αIIbβ3 activation by VWF/GP Ib-IX-V and other agonists. Blood, 2007, 109, 1018-1025.	1.4	59
45	Antithrombotic effects of targeting αIlbβ3 signaling in platelets. Blood, 2009, 113, 3585-3592.	1.4	52
46	Kindlins, Integrin Activation and the Regulation of Talin Recruitment to αIIbβ3. PLoS ONE, 2012, 7, e34056.	2.5	49
47	uPAR isoform 2 forms a dimer and induces severe kidney disease in mice. Journal of Clinical Investigation, 2019, 129, 1946-1959.	8.2	48
48	Role for ADAP in shear flow–induced platelet mechanotransduction. Blood, 2010, 115, 2274-2282.	1.4	45
49	Interaction of kindlin-2 with integrin β3 promotes outside-in signaling responses by the αVβ3 vitronectin receptor. Blood, 2015, 125, 1995-2004.	1.4	32
50	Rap1 binding to the talin 1 F0 domain makes a minimal contribution to murine platelet CPIIb-IIIa activation. Blood Advances, 2018, 2, 2358-2368.	5.2	30
51	Not Just Another Pretty Face: Regulation of Platelet Function at the Cytoplasmic Face of Integrin αIIbβ3. Thrombosis and Haemostasis, 1997, 78, 220-225.	3.4	28
52	Differences in Regulation of <i>Drosophila</i> and Vertebrate Integrin Affinity by Talin. Molecular Biology of the Cell, 2008, 19, 3589-3598.	2.1	26
53	The zebrafish vitronectin receptor: Characterization of integrin <i>αV</i> and <i>β3</i> expression patterns in early vertebrate development. Developmental Dynamics, 2007, 236, 2268-2276.	1.8	23
54	Group IVA cytosolic phospholipase A2 (cPLA2α) and integrin αIIbβ3 reinforce each other's functions during αIIbβ3 signaling in platelets. Blood, 2009, 113, 447-457.	1.4	23

SANFORD J SHATTIL

#	Article	IF	CITATIONS
55	SHARPIN at the nexus of integrin, immune, and inflammatory signaling in human platelets. Proceedings of the United States of America, 2019, 116, 4983-4988.	7.1	23
56	Underlying Immune Disorder May Predispose Some Transthyretin Amyloidosis Subjects to Inotersen-Mediated Thrombocytopenia. Nucleic Acid Therapeutics, 2020, 30, 94-103.	3.6	22
57	Ligand binding to integrin αvβ3requires tyrosine 178 in the αv subunit. Blood, 2001, 97, 175-182.	1.4	19
58	Optogenetic interrogation of integrin αVβ3 function in endothelial cells. Journal of Cell Science, 2017, 130, 3532-3541.	2.0	17
59	Genetic and Pharmacological Analyses of Syk Function in IIbβ3 Signaling in Platelets. Blood, 1999, 93, 2645-2652.	1.4	16
60	Protein-Protein Interactions in Platelet αIIbβ3Signaling. Seminars in Thrombosis and Hemostasis, 2004, 30, 427-439.	2.7	15
61	C-terminal COOH of Integrin β1 Is Necessary for β1 Association with the Kindlin-2 Adapter Protein. Journal of Biological Chemistry, 2014, 289, 11183-11193.	3.4	10
62	Platelet membrane proteins as adhesion receptors. , 2002, , 80-92.		10
63	Regulation of Platelet Adhesion Receptors. , 2017, , 69-84.		5
64	Optogenetics-based localization of talin to the plasma membrane promotes activation of β3 integrins. Journal of Biological Chemistry, 2021, 296, 100675.	3.4	5
65	Outside-In Signaling by Integrin αIIbβ3. , 2007, , 347-357.		3
66	Platelet SHARPIN regulates platelet adhesion and inflammatory responses through associations with αIIbβ3 and LUBAC. Blood Advances, 2022, 6, 2595-2607.	5.2	3
67	Cytosolic Phospholipase A2α (cPLA2α) Functions at the Nexus of Bidirectional Integrin Signaling in Platelets Blood, 2007, 110, 136-136.	1.4	2
68	Genetic Instruction of Megakaryocytes and Platelets Derived from Human Induced Pluripotent Stem Cells for Studies of Integrin Regulation. Methods in Molecular Biology, 2021, 2217, 237-249.	0.9	1
69	The T Cell Receptor SLAPs Integrins Together. Nature Immunology, 2001, 2, 904-905.	14.5	0
70	Megakaryocytes Derived from Human Embryonic Stem Cells: A Genetically Tractable System To Study Megakaryocytopoiesis and Integrin Function. Blood, 2005, 106, 1642-1642.	1.4	0
71	ADAPtation of Platelet Integrin αllbβ3 to Inside-Out Activation Signals. Blood, 2011, 118, 188-188.	1.4	0