
Chen Kai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/61389/publications.pdf Version: 2024-02-01

CHEN KAI

#	Article	IF	CITATIONS
1	A Novel Fluoro-Pyrazine-Bridged Donor-Accepter-Donor Fluorescent Probe for Lipid Droplet-Specific Imaging in Diverse Cells and Superoxide Anion Generation. Pharmaceutical Research, 2022, 39, 1205-1214.	3.5	2
2	Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor. Nature Communications, 2022, 13, .	12.8	66
3	Balancing skeleton and functional groups in total syntheses of complex natural products: a case study of tigliane, daphnane and ingenane diterpenoids. Natural Product Reports, 2021, 38, 1589-1617.	10.3	17
4	Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Science Advances, 2021, 7, .	10.3	68
5	A Novel Carbon Dots/Thermo-Sensitive In Situ Gel for a Composite Ocular Drug Delivery System: Characterization, Ex-Vivo Imaging, and In Vivo Evaluation. International Journal of Molecular Sciences, 2021, 22, 9934.	4.1	23
6	Interfacial energetic disorder induced by the molecular packing structure at conjugated polymer-based donor/acceptor heterojunctions. Journal of Materials Chemistry C, 2021, 9, 13761-13769.	5.5	4
7	Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor. Journal of Materials Chemistry C, 2020, 8, 909-915.	5.5	47
8	Dâ€A type (dfppy) 2 Ir(picâ€TPA) complex containing fluorinated pyridineâ€2â€earboxylate ligand and triphenylamine: synthesis, photophysics and bioactivity. Applied Organometallic Chemistry, 2020, 34, e5320.	3.5	2
9	Chalcogenâ€Fused Perylene Diimidesâ€Based Nonfullerene Acceptors for Highâ€Performance Organic Solar Cells: Insight into the Effect of O, S, and Se. Solar Rrl, 2020, 4, 1900453.	5.8	21
10	Altering the Positions of Chlorine and Bromine Substitution on the End Group Enables Highâ€Performance Acceptor and Efficient Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002649.	19.5	103
11	Deciphering the Role of Chalcogen-Containing Heterocycles in Nonfullerene Acceptors for Organic Solar Cells. ACS Energy Letters, 2020, 5, 3415-3425.	17.4	73
12	Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nature Communications, 2020, 11, 6005.	12.8	112
13	Whispering-Gallery Mode Lasing in Perovskite Nanocrystals Chemically Bound to Silicon Dioxide Microspheres. Journal of Physical Chemistry Letters, 2020, 11, 7009-7014.	4.6	16
14	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. ACS Energy Letters, 2020, 5, 2711-2720.	17.4	188
15	Modulating Energy Level on an Aâ€Dâ€A′â€Dâ€Aâ€Type Unfused Acceptor by a Benzothiadiazole Core Enable Organic Solar Cells with Simple Procedure and High Performance. Solar Rrl, 2020, 4, 2000421.	^S 5.8	48
16	<p>Dual Receptor-Targeted and Redox-Sensitive Polymeric Micelles Self-Assembled from a Folic Acid-Hyaluronic Acid-SS-Vitamin E Succinate Polymer for Precise Cancer Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 2885-2902.	6.7	32
17	Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%. Joule, 2020, 4, 1236-1247.	24.0	344
18	Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses. Energy and Environmental Science, 2020, 13, 2467-2479.	30.8	69

Chen Kai

#	Article	IF	CITATIONS
19	Fluorinated pyrazine-based D–A conjugated polymers for efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 7083-7089.	10.3	17
20	Phonon-Mediated and Weakly Size-Dependent Electron and Hole Cooling in CsPbBr ₃ Nanocrystals Revealed by Atomistic Simulations and Ultrafast Spectroscopy. Nano Letters, 2020, 20, 1819-1829.	9.1	41
21	Highâ€Performance Fluorinated Fusedâ€Ring Electron Acceptor with 3D Stacking and Exciton/Charge Transport. Advanced Materials, 2020, 32, e2000645.	21.0	122
22	High-performance organic solar cells based on polymer donor/small molecule donor/nonfullerene acceptor ternary blends. Journal of Materials Chemistry A, 2019, 7, 2268-2274.	10.3	42
23	Ultrafast Spectrally Resolved Photoinduced Complex Refractive Index Changes in CsPbBr ₃ Perovskites. ACS Photonics, 2019, 6, 345-350.	6.6	27
24	Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Cells with >12% Efficiency. Advanced Materials, 2018, 30, e1706363.	21.0	172
25	Shape-, Size-, and Composition-Controlled Thallium Lead Halide Perovskite Nanowires and Nanocrystals with Tunable Band Gaps. Chemistry of Materials, 2018, 30, 2973-2982.	6.7	28
26	Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. International Journal of Pharmaceutics, 2018, 535, 325-332.	5.2	160
27	High-Performance Fused Ring Electron Acceptor–Perovskite Hybrid. Journal of the American Chemical Society, 2018, 140, 14938-14944.	13.7	71
28	Optimized Fibril Network Morphology by Precise Sideâ€Chain Engineering to Achieve Highâ€Performance Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2018, 30, e1707353.	21.0	271
29	Design and Evaluation of Hydrophilic Matrix System Containing Polyethylene Oxides for the Zero-Order Controlled Delivery of Water-Insoluble Drugs. AAPS PharmSciTech, 2017, 18, 82-92.	3.3	22
30	Controlled Growth of CH ₃ NH ₃ PbI ₃ Using a Dynamically Dispensed Spinâ€Coating Method: Improving Efficiency with a Reproducible PbI ₂ Blocking Layer. ChemSusChem, 2017, 10, 2677-2684.	6.8	17
31	The Evolution of Quantum Confinement in CsPbBr ₃ Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 3644-3652.	6.7	258
32	Molecular dynamics simulation of interfaces and microstructure evolution during high-speed sliding. Numerical Heat Transfer; Part A: Applications, 2017, 72, 519-535.	2.1	4
33	Recent Advances in Transition-Metal-Free Aryl C–B Bond Formation. Synthesis, 2017, 49, 4719-4730.	2.3	19
34	A Hybrid Perovskite Solar Cell Modified With Copper Indium Sulfide Nanocrystals to Enhance Hole Transport and Moisture Stability. Solar Rrl, 2017, 1, 1700078.	5.8	19
35	A Hybrid Perovskite Solar Cell Modified With Copper Indium Sulfide Nanocrystals to Enhance Hole Transport and Moisture Stability (Solar RRL 8â^•2017). Solar Rrl, 2017, 1, 1770130.	5.8	0
36	Mapping Polymer Donors toward High‣fficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	21.0	360

Chen Kai

#	Article	IF	CITATIONS
37	3-Ethyl-2-(ethylimino)-4-methyl-2,3-dihydro-1,3-thiazole-5-carboxylate Ethyl Ester. MolBank, 2016, 2016, M919.	0.5	0
38	Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering. Nature Communications, 2016, 7, 13622.	12.8	157
39	Evolution of Nonmirror Image Fluorescence Spectra in Conjugated Polymers and Oligomers. Journal of Physical Chemistry Letters, 2016, 7, 3307-3312.	4.6	25
40	Tuneable Singlet Exciton Fission and Triplet–Triplet Annihilation in an Orthogonal Pentacene Dimer. Advanced Functional Materials, 2015, 25, 5452-5461.	14.9	184
41	Drug Delivery: Biocompatible Reactive Oxygen Species (ROS)â€Responsive Nanoparticles as Superior Drug Delivery Vehicles (Adv. Healthcare Mater. 1/2015). Advanced Healthcare Materials, 2015, 4, 168-168.	7.6	5
42	A concise synthesis of Fingolimod: an orally available drug for treating multiple sclerosis. Chemistry Central Journal, 2015, 9, 5.	2.6	1
43	Effect of Carrier Thermalization Dynamics on Light Emission and Amplification in Organometal Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 153-158.	4.6	101
44	HIGH-SENSITIVITY ULTRAFAST TRANSIENT ABSORPTION SPECTROSCOPY OF ORGANIC PHOTOVOLTAIC DEVICES. , 2014, , .		0
45	A Quantitative Study of Optical Gain Mechanisms in Quasi-2D Solution Processable Materials. , 0, , .		0
46	Phonon-Mediated and Weakly Size-Dependent Electron and Hole Cooling in CsPbBr3 Nanocrystals Revealed by Atomistic Simulations and Ultrafast Spectroscopy. , 0, , .		0
47	A Quantitative Study of Optical Gain Mechanisms in Quasi-2D Solution Processable Materials. , 0, , .		0