Flavia Sobreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6138706/publications.pdf

Version: 2024-02-01

194 papers 19,555 citations

63 h-index 135 g-index

196 all docs

196 docs citations

196 times ranked 12052 citing authors

#	Article	IF	CITATIONS
1	THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2015, 219, 12.	7.7	1,877
2	THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. Astrophysical Journal, Supplement Series, 2012, 203, 21.	7.7	1,158
3	Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astronomical Journal, 2017, 154, 28.	4.7	1,100
4	THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT. Astrophysical Journal, Supplement Series, 2014, 211, 17.	7.7	820
5	Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 2018, 98, .	4.7	751
6	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. Astrophysical Journal Letters, 2017, 848, L17.	8.3	656
7	The Dark Energy Survey: more than dark energy – an overview. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1270-1299.	4.4	618
8	THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA. Astronomical Journal, 2016, 151, 44.	4.7	582
9	EIGHT NEW MILKY WAY COMPANIONS DISCOVERED IN FIRST-YEAR DARK ENERGY SURVEY DATA. Astrophysical Journal, 2015, 807, 50.	4.5	466
10	The Dark Energy Survey: Data Release 1. Astrophysical Journal, Supplement Series, 2018, 239, 18.	7.7	455
11	SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT. Astrophysical Journal, 2017, 834, 110.	4.5	412
12	Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear. Physical Review D, 2018, 98, .	4.7	412
13	EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY. Astrophysical Journal, 2015, 813, 109.	4.5	405
14	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. Astrophysical Journal Letters, 2017, 848, L16.	8.3	392
15	THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA. Astrophysical Journal, Supplement Series, 2016, 224, 1.	7.7	233
16	First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters. Astrophysical Journal Letters, 2019, 872, L30.	8.3	201
17	Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3879-3888.	4.4	196
18	Stellar Streams Discovered in the Dark Energy Survey. Astrophysical Journal, 2018, 862, 114.	4.5	193

#	Article	IF	Citations
19	Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology. Astrophysical Journal, Supplement Series, 2018, 235, 33.	7.7	192
20	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
21	The Dark Energy Survey Image Processing Pipeline. Publications of the Astronomical Society of the Pacific, 2018, 130, 074501.	3.1	161
22	redMaGiC: selecting luminous red galaxies from the DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1431-1450.	4.4	156
23	Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 592-610.	4.4	145
24	Dark Energy Survey Year 1 results: weak lensing shape catalogues. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1149-1182.	4.4	144
25	First cosmological results using Type la supernovae from the Dark Energy Survey: measurement of the Hubble constant. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2184-2196.	4.4	143
26	The DES Science Verification weak lensing shear catalogues. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2245-2281.	4.4	137
27	Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1352-1378.	4.4	135
28	STELLAR KINEMATICS AND METALLICITIES IN THE ULTRA-FAINT DWARF GALAXY RETICULUM II. Astrophysical Journal, 2015, 808, 95.	4.5	132
29	SEARCH FOR GAMMA-RAY EMISSION FROM DES DWARF SPHEROIDAL GALAXY CANDIDATES WITH <i>>FERMI</i> -LAT DATA. Astrophysical Journal Letters, 2015, 809, L4.	8.3	131
30	THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY. Astronomical Journal, 2015, 150, 172.	4.7	128
31	Cosmology from cosmic shear with Dark Energy Survey Science Verification data. Physical Review D, 2016, 94, .	4.7	125
32	Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3653-3673.	4.4	119
33	Farthest Neighbor: The Distant Milky Way Satellite Eridanus II*. Astrophysical Journal, 2017, 838, 8.	4.5	119
34	Rapidly evolving transients in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2018, 481, 894-917.	4.4	109
35	Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4866-4883.	4.4	109
36	AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY. Astronomical Journal, 2015, 150, 82.	4.7	107

#	Article	IF	Citations
37	Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing. Physical Review D, 2016, 94, .	4.7	105
38	Dark Energy Survey year 1 results: Galaxy clustering for combined probes. Physical Review D, 2018, 98, .	4.7	102
39	An r-process Enhanced Star in the Dwarf Galaxy Tucana III*. Astrophysical Journal, 2017, 838, 44.	4.5	101
40	CMB lensing tomography with the DES Science Verification galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3213-3244.	4.4	95
41	Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4702-4718.	4.4	92
42	First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation. Astrophysical Journal, 2019, 874, 150.	4.5	92
43	Detection of the kinematic Sunyaevâ€"Zel'dovich effect with DES Year 1 and SPT. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3172-3193.	4.4	88
44	Constraints on the richness–mass relation and the optical-SZE positional offset distribution for SZE-selected clusters. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2305-2319.	4.4	87
45	Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4899-4920.	4.4	87
46	Cosmic voids and void lensing in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 465, 746-759.	4.4	86
47	Cosmological Constraints from Multiple Probes in the Dark Energy Survey. Physical Review Letters, 2019, 122, 171301.	7.8	86
48	Nearest Neighbor: The Low-mass Milky Way Satellite Tucana III*. Astrophysical Journal, 2017, 838, 11.	4.5	83
49	Cosmic shear measurements with Dark Energy Survey Science Verification data. Physical Review D, 2016, 94, .	4.7	81
50	DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP. Astrophysical Journal Letters, 2016, 818, L8.	8.3	78
51	Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4301-4324.	4.4	77
52	An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks. Astrophysical Journal, Supplement Series, 2019, 243, 17.	7.7	77
53	OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3047-3063.	4.4	75
54	Density split statistics: Cosmological constraints from counts and lensing in cells in DES Y1 and SDSS data. Physical Review D, 2018, 98, .	4.7	75

#	Article	IF	CITATIONS
55	Forward Global Photometric Calibration of the Dark Energy Survey. Astronomical Journal, 2018, 155, 41.	4.7	74
56	Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5649-5671.	4.4	73
57	Weak lensing by galaxy troughs in DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3367-3380.	4.4	71
58	No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2016, 457, 786-808.	4.4	71
59	Dark Energy Survey year 1 results: Galaxy-galaxy lensing. Physical Review D, 2018, 98, .	4.7	71
60	The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles. Astrophysical Journal, 2018, 864, 83.	4.5	69
61	Superluminous supernovae from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2215-2241.	4.4	67
62	VDES J2325â^'5229 a <i>z</i> = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4325-4334.	4.4	66
63	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2018, 609, A71.	5.1	66
64	OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release. Monthly Notices of the Royal Astronomical Society, 2017, 472, 273-288.	4.4	65
65	Dark Energy Survey Year 1 Results: Detection of Intracluster Light at RedshiftÂâ^1/4Â0.25. Astrophysical Journal, 2019, 874, 165.	4.5	65
66	Three new VHS–DES quasars at 6.7 < z < 6.9 and emission line properties at z > 6.5. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1874-1885.	4.4	64
67	The First Tidally Disrupted Ultra-faint Dwarf Galaxy?: A Spectroscopic Analysis of the Tucana III Stream ^{â^—} â€. Astrophysical Journal, 2018, 866, 22.	4.5	63
68	Dark Energy Survey Year 1 results: cross-correlation redshifts â€" methods and systematics characterization. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1664-1682.	4.4	63
69	Dark Energy Survey Year 1 results: constraints on intrinsic alignments and their colour dependence from galaxy clustering and weak lensing. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5453-5482.	4.4	62
70	Finding high-redshift strong lenses in DES using convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5330-5349.	4.4	62
71	First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1171-1187.	4.4	62
72	Dark Energy Survey Year 1 results: curved-sky weak lensing mass map. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3165-3190.	4.4	60

#	Article	IF	CITATIONS
73	How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?. Astrophysical Journal Letters, 2018, 852, L3.	8.3	60
74	First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release. Astrophysical Journal, 2019, 874, 106.	4.5	60
75	Density split statistics: Joint model of counts and lensing in cells. Physical Review D, 2018, 98, .	4.7	59
76	A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L33.	8.3	55
77	HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS. Astronomical Journal, 2016, 152, 154.	4.7	55
78	Digging deeper into the Southern skies: a compact Milky Way companion discovered in first-year Dark Energy Survey data. Monthly Notices of the Royal Astronomical Society, 2016, 458, 603-612.	4.4	53
79	Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing. Monthly Notices of the Royal Astronomical Society, 2019, 489, 820-841.	4.4	52
80	Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2900-2918.	4.4	52
81	The clustering of galaxies in the SDSS-III DR10 Baryon Oscillation Spectroscopic Survey: no detectable colour dependence of distance scale or growth rate measurements. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1109-1126.	4.4	50
82	Joint measurement of lensing–galaxy correlations using SPT and DES SV data. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4099-4114.	4.4	50
83	The Clustering of Luminous Red Galaxies at zÂâ^¼Â0.7 from EBOSS and BOSS Data. Astrophysical Journal, 2017, 848, 76.	4.5	50
84	Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark Energy Survey. Astrophysical Journal, 2018, 862, 123.	4.5	50
85	Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993. Astrophysical Journal Letters, 2017, 849, L34.	8.3	49
86	Cosmology from large-scale galaxy clustering and galaxy–galaxy lensing with Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4045-4062.	4.4	48
87	The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations. Astrophysical Journal, Supplement Series, 2017, 232, 15.	7.7	48
88	Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1444-1461.	4.4	48
89	The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1041-1054.	4.4	48
90	Wide-field lensing mass maps from Dark Energy Survey science verification data: Methodology and detailed analysis. Physical Review D, 2015, 92, .	4.7	47

#	Article	IF	CITATIONS
91	MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATA. Astrophysical Journal, Supplement Series, 2016, 226, 24.	7.7	47
92	THE PHOENIX STREAM: A COLD STREAM IN THE SOUTHERN HEMISPHERE. Astrophysical Journal, 2016, 820, 58.	4.5	46
93	Cross-correlation of gravitational lensing from DES Science Verification data with SPT and <i>Planck </i> lensing. Monthly Notices of the Royal Astronomical Society, 2016, 459, 21-34.	4.4	46
94	A new RASS galaxy cluster catalogue with low contamination extending to z \hat{a}^4 1 in the DES overlap region. Monthly Notices of the Royal Astronomical Society, 2019, 488, 739-769.	4.4	44
95	GALAXIES IN X-RAY SELECTED CLUSTERS AND GROUPS IN DARK ENERGY SURVEY DATA. I. STELLAR MASS GROWTH OF BRIGHT CENTRAL GALAXIES SINCE z $\hat{a}^{-1}/4$ 1.2. Astrophysical Journal, 2016, 816, 98.	4.5	43
96	Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with im3shape. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4524-4543.	4.4	43
97	Discovery and Dynamical Analysis of an Extreme Trans-Neptunian Object with a High Orbital Inclination. Astronomical Journal, 2018, 156, 81.	4.7	42
98	Discovery of two gravitationally lensed quasars in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1260-1265.	4.4	41
99	A measurement of CMB cluster lensing with SPT and DES year 1 data. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2674-2688.	4.4	41
100	Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data. Physical Review Letters, 2015, 115, 051301.	7.8	40
101	Astrometric Calibration and Performance of the Dark Energy Camera. Publications of the Astronomical Society of the Pacific, 2017, 129, 074503.	3.1	40
102	Galaxy–galaxy lensing in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4204-4218.	4.4	40
103	Dark Energy Survey Year 1 Results: calibration of redMaGiC redshift distributions in DES and SDSS from cross-correlations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2427-2443.	4.4	39
104	DES meets Gaia: discovery of strongly lensed quasars from a multiplet search. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4345-4354.	4.4	39
105	A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO THE LIGO GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 826, L29.	8.3	38
106	A stellar overdensity associated with the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1349-1360.	4.4	38
107	A multicomponent matched filter cluster confirmation tool for eROSITA: initial application to the RASS and DES-SV data sets. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3324-3343.	4.4	38
108	Dark Energy Survey year 1 results: Joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions. Physical Review D, 2019, 100, .	4.7	38

#	Article	IF	CITATIONS
109	On the relative bias of void tracers in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2836-2852.	4.4	37
110	DISCOVERY OF A STELLAR OVERDENSITY IN ERIDANUS–PHOENIX IN THE DARK ENERGY SURVEY. Astrophysical Journal, 2016, 817, 135.	4.5	36
111	The Dark Energy Survey view of the Sagittarius stream: discovery of two faint stellar system candidates. Monthly Notices of the Royal Astronomical Society, 2017, 468, 97-108.	4.4	36
112	Imprint of DES superstructures on the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4166-4179.	4.4	36
113	Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>/mml:mi</mml:mi>/mml:mi>/mml:mi>/mml:mi/mml:mi>/mml:m</mml:math>	4.7 <td>35 ow></td>	35 ow>
114	Physical Review D, 2019, 100, . Search for RR Lyrae stars in DES ultrafaint systems: GrusÂl, KimÂ2, PhoenixÂll, and GrusÂll. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2183-2199.	4.4	35
115	C iv black hole mass measurements with the Australian Dark Energy Survey (OzDES). Monthly Notices of the Royal Astronomical Society, 2019, 487, 3650-3663.	4.4	35
116	Dark Energy Survey Year 1 results: Methodology and projections for joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions. Physical Review D, 2019, 99, .	4.7	35
117	A Search for Kilonovae in the Dark Energy Survey. Astrophysical Journal, 2017, 837, 57.	4.5	34
118	Improving weak lensing mass map reconstructions using Gaussian and sparsity priors: application to DES SV. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2871-2888.	4.4	34
119	SDSS-IV eBOSS emission-line galaxy pilot survey. Astronomy and Astrophysics, 2016, 592, A121.	5.1	33
120	Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I*. Astrophysical Journal, 2018, 852, 99.	4.5	33
121	Quasar Accretion Disk Sizes from Continuum Reverberation Mapping in the DES Standard-star Fields. Astrophysical Journal, Supplement Series, 2020, 246, 16.	7.7	33
122	Discovery of the Lensed Quasar System DES J0408-5354. Astrophysical Journal Letters, 2017, 838, L15.	8.3	32
123	Dark Energy Survey year 1 results: the relationship between mass and light around cosmic voids. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3573-3587.	4.4	32
124	Galaxy Populations in Massive Galaxy Clusters to z = 1.1: Color Distribution, Concentration, Halo Occupation Number and Red Sequence Fraction. Monthly Notices of the Royal Astronomical Society, 0, , stx175.	4.4	30
125	The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2531-2539.	4.4	28
126	Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au. Astrophysical Journal Letters, 2017, 839, L15.	8.3	28

#	Article	IF	CITATIONS
127	Mass Calibration of Optically Selected DES Clusters Using a Measurement of CMB-cluster Lensing with SPTpol Data. Astrophysical Journal, 2019, 872, 170.	4.5	28
128	Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4591-4606.	4.4	28
129	Constraints on the Physical Properties of GW190814 through Simulations Based on DECam Follow-up Observations by the Dark Energy Survey. Astrophysical Journal, 2020, 901, 83.	4.5	28
130	The Morphology and Structure of Stellar Populations in the Fornax Dwarf Spheroidal Galaxy from Dark Energy Survey Data. Astrophysical Journal, 2019, 881, 118.	4.5	27
131	Trans-Neptunian Objects Found in the First Four Years of the Dark Energy Survey. Astrophysical Journal, Supplement Series, 2020, 247, 32.	7.7	27
132	First Cosmology Results using Supernovae la from the Dark Energy Survey: Survey Overview, Performance, and Supernova Spectroscopy. Astronomical Journal, 2020, 160, 267.	4.7	27
133	SIMPLE COSMOLOGICAL MODEL WITH RELATIVISTIC GAS. Modern Physics Letters A, 2005, 20, 2723-2734.	1.2	25
134	ASSESSMENT OF SYSTEMATIC CHROMATIC ERRORS THAT IMPACT SUB-1% PHOTOMETRIC PRECISION IN LARGE-AREA SKY SURVEYS. Astronomical Journal, 2016, 151, 157.	4.7	24
135	The dark energy survey and operations: years 1 to 3. Proceedings of SPIE, 2016, , .	0.8	23
136	Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3203-3216.	4.4	23
137	Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two. Astrophysical Journal, 2018, 854, 37.	4.5	23
138	Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2196-2208.	4.4	23
139	A catalogue of structural and morphological measurements for DES Y1. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2018-2040.	4.4	23
140	Brown dwarf census with the Dark Energy Survey year 3 data and the thin disc scale height of early L types. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5301-5325.	4.4	23
141	Dark Energy Survey Year 1 Results: Cross-correlation between Dark Energy Survey Y1 galaxy weak lensing and South Pole Telescope <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>+<mml:mi></mml:mi><td>4.7 nml:mi>a</td><td><n< td=""></n<></td></mml:mo></mml:mrow></mml:math>	4.7 nml:mi>a	<n< td=""></n<>
142	Dark Energy Survey year 1 results: galaxy sample for BAO measurement. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2807-2822.	4.4	22
143	OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA*. Astrophysical Journal, 2016, 827, 51.	4.5	21
144	A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey. Astronomical Journal, 2017, 153, 107.	4.7	21

#	Article	IF	CITATIONS
145	Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data. Monthly Notices of the Royal Astronomical Society, 2017, 466, 228-247.	4.4	21
146	Weak lensing magnification in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1071-1085.	4.4	21
147	Dark Energy Survey Year 1 results: measurement of the galaxy angular power spectrum. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3870-3883.	4.4	21
148	Weak-lensing analysis of SPT-selected galaxy clusters using Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2019, 485, 69-87.	4.4	21
149	Physical properties of star clusters in the outer LMC as observed by the DES. Monthly Notices of the Royal Astronomical Society, 2016, 461, 519-541.	4.4	20
150	A DARK ENERGY CAMERA SEARCH FOR MISSING SUPERGIANTS IN THE LMC AFTER THE ADVANCED LIGO GRAVITATIONAL-WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L34.	8.3	20
151	Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1. Astrophysical Journal, 2017, 843, 148.	4.5	20
152	OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS. Astronomical Journal, 2016, 151, 39.	4.7	19
153	Dark Energy Survey Year 1 results: validation of weak lensing cluster member contamination estimates from P(z) decomposition. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2511-2524.	4.4	19
154	Producing a BOSS CMASS sample with DES imaging. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2887-2906.	4.4	19
155	Rediscovery of the Sixth Star Cluster in the Fornax Dwarf Spheroidal Galaxy. Astrophysical Journal Letters, 2019, 875, L13.	8.3	19
156	Dynamical Classification of Trans-Neptunian Objects Detected by the Dark Energy Survey. Astronomical Journal, 2020, 159, 133.	4.7	19
157	Large-scale analysis of the SDSS-III DR8 photometric luminous galaxies angular correlation function. Monthly Notices of the Royal Astronomical Society, 2013, 435, 3017-3027.	4.4	18
158	Models of the strongly lensed quasar DES J0408â^'5354. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4038-4050.	4.4	18
159	Candidate massive galaxies at <i>z</i> \hat{A} â^1/4Â4 in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3060-3081.	4.4	18
160	The first Hubble diagram and cosmological constraints using superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2535-2549.	4.4	18
161	Deep SOAR follow-up photometry of two Milky Way outer-halo companions discovered with Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2006-2018.	4.4	17
162	Evidence for color dichotomy in the primordial Neptunian Trojan population. Icarus, 2019, 321, 426-435.	2.5	17

#	Article	IF	Citations
163	Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey. Physical Review D, 2016, 94, .	4.7	16
164	DES science portal: Computing photometric redshifts. Astronomy and Computing, 2018, 25, 58-80.	1.7	16
165	Cosmological lensing ratios with DES Y1, SPT, and Planck. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1363-1379.	4.4	16
166	Identification of RR Lyrae Stars in Multiband, Sparsely Sampled Data from the Dark Energy Survey Using Template Fitting and Random Forest Classification. Astronomical Journal, 2019, 158, 16.	4.7	16
167	First cosmology results using Type IA supernovae from the dark energy survey: effects of chromatic corrections to supernova photometry on measurements of cosmological parameters. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5329-5344.	4.4	16
168	Detection of Cross-Correlation between Gravitational Lensing and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math> Rays. Physical Review Letters, 2020, 124, 101102.	7.8	16
169	Mass variance from archival X-ray properties of Dark Energy Survey Year-1 galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3341-3354.	4.4	15
170	Modelling the Milky Way – I. Method and first results fitting the thick disc and halo with DES-Y3 data. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1547-1562.	4.4	15
171	BAO from angular clustering: optimization and mitigation of theoretical systematics. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3031-3051.	4.4	14
172	Galaxy bias from galaxy–galaxy lensing in the DES science verification data. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1667-1684.	4.4	14
173	A Search for Optical Emission from Binary Black Hole Merger GW170814 with the Dark Energy Camera. Astrophysical Journal Letters, 2019, 873, L24.	8.3	14
174	Measuring linear and non-linear galaxy bias using counts-in-cells in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1435-1451.	4.4	13
175	Comparing Dark Energy Survey and <i>HST </i> i>–CLASH observations of the galaxy cluster RXC J2248.7â°4431: implications for stellar mass versus dark matter. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1486-1499.	4.4	12
176	DM particles: how warm they can be?. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 001-001.	5.4	11
177	Effective potential in curved space and cut-off regularizations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 705, 273-278.	4.1	11
178	Dynamical Analysis of Three Distant Trans-Neptunian Objects with Similar Orbits. Astronomical Journal, 2018, 156, 273.	4.7	11
179	DES15E2mlf: A Spectroscopically Confirmed Superluminous Supernova that Exploded 3.5ÂGyr After the Big Bang. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	10
180	UV-luminous, star-forming hosts of z $\hat{a}^{1/4}$ 2 reddened quasars in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3682-3699.	4.4	10

#	Article	IF	CITATIONS
181	Optical follow-up of gravitational wave triggers with DECam during the first two LIGO/VIRGO observing runs. Astronomy and Computing, 2020, 33, 100425.	1.7	9
182	Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2771-2790.	4.4	8
183	Galaxies in X-ray selected clusters and groups in Dark Energy Survey data – II. Hierarchical Bayesian modelling of the red-sequence galaxy luminosity function. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1-17.	4.4	8
184	Astrometry and Occultation Predictions to Trans-Neptunian and Centaur Objects Observed within the Dark Energy Survey. Astronomical Journal, 2019, 157, 120.	4.7	8
185	Dark Energy Survey Year 1 Results: Wide-field mass maps via forward fitting in harmonic space. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5662-5679.	4.4	8
186	A DECam Search for Explosive Optical Transients Associated with IceCube Neutrino Alerts. Astrophysical Journal, 2019, 883, 125.	4. 5	8
187	Cosmological forecasts from photometric measurements of the angular correlation function. Physical Review D, 2011, 84, .	4.7	7
188	Dark Energy Survey Year 1 results: the effect of intracluster light on photometric redshifts for weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4389-4399.	4.4	7
189	Observation and confirmation of nine strong-lensing systems in Dark Energy Survey Year 1 data. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1308-1322.	4.4	6
190	DES science portal: Creating science-ready catalogs. Astronomy and Computing, 2018, 24, 52-69.	1.7	5
191	Forecasts for warm dark matter from photometric galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1290-1299.	4.4	4
192	Discovery of a $z\hat{A}$ = \hat{A} 0.65 post-starburst BAL quasar in the DES supernova fields. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3682-3688.	4.4	3
193	Optical follow-up of gravitational wave triggers with DECam. Journal of Physics: Conference Series, 2017, 898, 032050.	0.4	2
194	Reprint of "Evidence for color dichotomy in the primordial Neptunian Trojan population". Icarus, 2019, 334, 79-88.	2.5	1