List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6138341/publications.pdf Version: 2024-02-01



IIIIIA \\/ D Hsii

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | ZrHfO2-PMMA hybrid dielectric layers for high-performance all solution-processed In2O3-based TFTs.<br>Materials Research Bulletin, 2022, 150, 111768.                                                      | 5.2  | 3         |
| 2  | How Optical and Electrical Properties of ITO Coated Willow Glass Affect Photonic Curing Outcome for Upscaling Perovskite Solar Cell Manufacturing. IEEE Journal of Photovoltaics, 2022, 12, 722-727.       | 2.5  | 4         |
| 3  | Color-temperature dependence of indoor organic photovoltaic performance. Organic Electronics, 2022, 104, 106477.                                                                                           | 2.6  | 2         |
| 4  | Accelerate process optimization in perovskite solar cell manufacturing with machine learning.<br>Matter, 2022, 5, 1334-1336.                                                                               | 10.0 | 6         |
| 5  | Re-Examining Open-Circuit Voltage in Dilute-Donor Organic Photovoltaics. Journal of Physical<br>Chemistry C, 2022, 126, 9275-9283.                                                                         | 3.1  | 1         |
| 6  | Elucidating Diiodomethane-Induced Improvement in Photonically Cured MAPbI <sub>3</sub> Solar<br>Cells. ACS Applied Energy Materials, 2022, 5, 7328-7334.                                                   | 5.1  | 3         |
| 7  | Stable and Bright Electroluminescent Devices utilizing Emissive OD Perovskite Nanocrystals<br>Incorporated in a 3D CsPbBr <sub>3</sub> Matrix. Advanced Materials, 2022, 34, .                             | 21.0 | 18        |
| 8  | Change in Stability and Degradation Pathway of MAPbI3 Arising from Contact with Oxide Transport<br>Layer Materials. , 2021, , .                                                                            |      | 0         |
| 9  | Photonic Curing for High Throughput Halide Perovskite Solar Cell Fabrication. , 2021, , .                                                                                                                  |      | 0         |
| 10 | Intrinsic Stability and Degradation Pathway of Formamidinium Iodide (HC(NH2)2I) in Contact with Metal Oxide. , 2021, , .                                                                                   |      | 0         |
| 11 | Photonic curing for High Throughput Fabrication of Perovskite Solar cells. , 2021, , .                                                                                                                     |      | 0         |
| 12 | Photonic Curing Enabled High-Speed Processing for Perovskite Solar Cells. , 2021, , .                                                                                                                      |      | 0         |
| 13 | Origin of Hole Transport in Small Molecule Dilute Donor Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2000042.                                                                        | 5.8  | 7         |
| 14 | Tuning the electrical performance of solution-processed In2O3TFTs by low-temperature with HfO2-PVP hybrid dielectric. Materials Today Communications, 2021, 26, 102120.                                    | 1.9  | 4         |
| 15 | Photonic Curing of Nickel Oxide Transport Layer and Perovskite Active Layer for Flexible Perovskite<br>Solar Cells: A Path Towards High-Throughput Manufacturing. Frontiers in Energy Research, 2021, 9, . | 2.3  | 15        |
| 16 | Earthâ€Abundant Transition Metalâ€Based Mulliteâ€Type Oxide Catalysts for Heterogeneous Oxidation<br>Reactions. Advanced Energy and Sustainability Research, 2021, 2, 2000075.                             | 5.8  | 8         |
| 17 | Earthâ€Abundant Transition Metalâ€Based Mullite‶ype Oxide Catalysts for Heterogeneous Oxidation<br>Reactions. Advanced Energy and Sustainability Research, 2021, 2, 2170011.                               | 5.8  | 4         |
| 18 | Energy levels in dilute-donor organic solar cell photocurrent generation: A thienothiophene donor molecule study. Organic Electronics, 2021, 92, 106137.                                                   | 2.6  | 9         |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Optical and Electrical Properties of ITO Coated Willow Glass for Upscaling Perovskite Solar Cell<br>Manufacturing Using Photonic Curing. , 2021, , .                                                            |      | 1         |
| 20 | Metal Oxide-Induced Instability and Its Mitigation in Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 8495-8506.                                                                | 4.6  | 22        |
| 21 | Effects of atmosphere composition during direct ultraviolet-light patterning of solution-deposited<br>In2O3 thin film transistors. Thin Solid Films, 2021, 733, 138829.                                         | 1.8  | Ο         |
| 22 | Opposite Polarity Surface Photovoltage of MoS <sub>2</sub> Monolayers on Au Nanodot versus<br>Nanohole Arrays. ACS Applied Materials & Interfaces, 2020, 12, 48991-48997.                                       | 8.0  | 15        |
| 23 | Bulk and interfacial decomposition of formamidinium iodide (HC(NH <sub>2</sub> ) <sub>2</sub> I) in contact with metal oxide. Materials Advances, 2020, 1, 3349-3357.                                           | 5.4  | 14        |
| 24 | Importance of separating contacts from the photosensitive layer in heterojunction phototransistors.<br>Superlattices and Microstructures, 2020, 148, 106713.                                                    | 3.1  | 2         |
| 25 | Effects of Photonic Curing Processing Conditions on MAPbI <sub>3</sub> Film Properties and Solar<br>Cell Performance. ACS Applied Energy Materials, 2020, 3, 8636-8645.                                         | 5.1  | 18        |
| 26 | Photonic curing of solution-deposited ZrO2 dielectric on PEN: a path towards high-throughput processing of oxide electronics. Npj Flexible Electronics, 2020, 4, .                                              | 10.7 | 25        |
| 27 | Device Architecture Study in Fullerene-Based Organic Photovoltaics. Journal of Physical Chemistry C,<br>2020, 124, 12982-12989.                                                                                 | 3.1  | 3         |
| 28 | Altered Stability and Degradation Pathway of CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> in<br>Contact with Metal Oxide. ACS Energy Letters, 2020, 5, 1147-1152.                                           | 17.4 | 51        |
| 29 | Role of Surface Oxygen Vacancies in Intermediate Formation on Mullite-type Oxides upon NO<br>Adsorption. Journal of Physical Chemistry C, 2020, 124, 15913-15919.                                               | 3.1  | 9         |
| 30 | Photonic Curing Enabling High-Speed Processing for Perovskite Solar Cells. , 2020, , .                                                                                                                          |      | 0         |
| 31 | Integrated Experimental–Theoretical Approach To Determine Reliable Molecular Reaction Mechanisms<br>on Transition-Metal Oxide Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 30460-30469.              | 8.0  | 9         |
| 32 | Mg Doped CuCrO2 as Efficient Hole Transport Layers for Organic and Perovskite Solar Cells.<br>Nanomaterials, 2019, 9, 1311.                                                                                     | 4.1  | 24        |
| 33 | Stable and Active Oxidation Catalysis by Cooperative Lattice Oxygen Redox on<br>SmMn <sub>2</sub> O <sub>5</sub> Mullite Surface. Journal of the American Chemical Society, 2019,<br>141, 10722-10728.          | 13.7 | 64        |
| 34 | Superior low-temperature NO catalytic performance of PrMn <sub>2</sub> O <sub>5</sub> over<br>SmMn <sub>2</sub> O <sub>5</sub> mullite-type catalysts. Catalysis Science and Technology, 2019, 9,<br>2758-2766. | 4.1  | 16        |
| 35 | Probing Defect States in Organic Polymers and Bulk Heterojunctions Using Surface Photovoltage Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 10795-10801.                                            | 3.1  | 5         |
| 36 | Critical Role of Mullite-type Oxides' Surface Chemistry on Catalytic NO Oxidation Performance.<br>Journal of Physical Chemistry C, 2019, 123, 5385-5393.                                                        | 3.1  | 15        |

| #  | Article                                                                                                                                                                                                                                                             | IF                  | CITATIONS          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|
| 37 | Solution Synthesis, Processing, and Applications of Semiconducting Nanomaterials. Nanomaterials, 2019, 9, 1442.                                                                                                                                                     | 4.1                 | 1                  |
| 38 | Revealing lattice and photocarrier dynamics of high-quality MAPbBr3 single crystals by far infrared reflection and surface photovoltage spectroscopy. Journal of Applied Physics, 2019, 125, 025706.                                                                | 2.5                 | 9                  |
| 39 | Effect of R-site element on crystalline phase and thermal stability of Fe substituted Mn mullite-type<br>oxides: R <sub>2</sub> (Mn <sub>1â^'x</sub> Fe <sub>x</sub> ) <sub>4</sub> O <sub>10â^'î</sub> (R = Y, Sm or                                               | ) Tj <b>3E∂</b> Qq1 | 1 <b>0</b> 1784314 |
| 40 | Combustion Synthesis of p-Type Transparent Conducting CuCrO <sub>2+<i>x</i></sub> and<br>Cu:CrO <sub><i>x</i></sub> Thin Films at 180 °C. ACS Applied Materials & Interfaces, 2018, 10,<br>3732-3738.                                                               | 8.0                 | 29                 |
| 41 | Effects of TiO2 nanoparticle size and concentration on dielectric properties of polypropylene nanocomposites. Journal of Materials Science, 2018, 53, 9149-9159.                                                                                                    | 3.7                 | 10                 |
| 42 | Minimizing performance degradation induced by interfacial recombination in perovskite solar cells through tailoring of the transport layer electronic properties. APL Materials, 2018, 6, .                                                                         | 5.1                 | 29                 |
| 43 | Superior catalytic performance of Mn-Mullite over Mn-Perovskite for NO oxidation. Catalysis Today, 2018, 310, 195-201.                                                                                                                                              | 4.4                 | 52                 |
| 44 | Broadband Terahertz Refraction Index Dispersion and Loss of Polymeric Dielectric Substrate and<br>Packaging Materials. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 93-104.                                                                      | 2.2                 | 12                 |
| 45 | Room-temperature fabrication of a delafossite CuCrO <sub>2</sub> hole transport layer for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 469-477.                                                                                               | 10.3                | 91                 |
| 46 | Effects of Environmental Water Absorption by Solution-Deposited Al <sub>2</sub> O <sub>3</sub> Gate<br>Dielectrics on Thin Film Transistor Performance and Mobility. ACS Applied Materials & Interfaces,<br>2018, 10, 39435-39440.                                  | 8.0                 | 26                 |
| 47 | Tunable Electrical and Optical Properties of Nickel Oxide (NiO <sub><i>x</i></sub> ) Thin Films for<br>Fully Transparent NiO <sub><i>x</i></sub> –Ga <sub>2</sub> O <sub>3</sub> p–n Junction Diodes. ACS<br>Applied Materials & Interfaces, 2018, 10, 38159-38165. | 8.0                 | 48                 |
| 48 | Solution-processed oxide thin film transistors on shape memory polymer enabled by photochemical self-patterning. Journal of Materials Research, 2018, 33, 2454-2462.                                                                                                | 2.6                 | 22                 |
| 49 | Origin of Photocurrent in Fullerene-Based Solar Cells. Journal of Physical Chemistry C, 2018, 122, 15140-15148.                                                                                                                                                     | 3.1                 | 24                 |
| 50 | nâ€Type Doping Induced by Electron Transport Layer in Organic Photovoltaic Devices. Advanced<br>Electronic Materials, 2017, 3, 1600458.                                                                                                                             | 5.1                 | 8                  |
| 51 | Solution synthesis of few-layer 2H MX <sub>2</sub> (M = Mo, W; X = S, Se). Journal of Materials<br>Chemistry C, 2017, 5, 2859-2864.                                                                                                                                 | 5.5                 | 32                 |
| 52 | Solution-deposited Al2O3 dielectric towards fully-patterned thin film transistors on shape memory polymer. , 2017, , .                                                                                                                                              |                     | 4                  |
| 53 | Structural Order: The Dominant Factor for Nongeminate Recombination in Organic Photovoltaic Devices. Journal of Physical Chemistry C, 2017, 121, 9242-9248.                                                                                                         | 3.1                 | 2                  |
| 54 | Intrinsic air stability mechanisms of two-dimensional transition metal dichalcogenide surfaces: basal versus edge oxidation. 2D Materials, 2017, 4, 025050.                                                                                                         | 4.4                 | 87                 |

| #  | Article                                                                                                                                                                                                                                       | IF             | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 55 | Nucleation and growth of WSe <sub>2</sub> : enabling large grain transition metal dichalcogenides.<br>2D Materials, 2017, 4, 045019.                                                                                                          | 4.4            | 96        |
| 56 | Understanding the source of dielectric loss in Titania/polypropylene nanocomposites up to 220 GHz.<br>Proceedings of SPIE, 2017, , .                                                                                                          | 0.8            | 2         |
| 57 | Inverted OPVs with MoS2 hole transport layer deposited by spray coating. Materials Today Energy, 2017, 5, 107-111.                                                                                                                            | 4.7            | 6         |
| 58 | Transport Effects on Capacitance-Frequency Analysis for Defect Characterization in Organic<br>Photovoltaic Devices. Physical Review Applied, 2016, 6, .                                                                                       | 3.8            | 36        |
| 59 | Role of Contact Injection, Exciton Dissociation, and Recombination, Revealed through Voltage and<br>Intensity Mapping of the Quantum Efficiency of Polymer:Fullerene Solar Cells. Journal of Physical<br>Chemistry C, 2016, 120, 10146-10155. | 3.1            | 11        |
| 60 | Effects of synthesis conditions on structure and surface properties of SmMn2O5 mullite-type oxide.<br>Applied Surface Science, 2016, 385, 490-497.                                                                                            | 6.1            | 24        |
| 61 | Thermal stability of mullite <i>R</i> Mn <sub>2</sub> O <sub>5</sub> ( <i>R</i> =  Bi, Y, Pr, Sm<br>combined density functional theory and experimental study. Journal of Physics Condensed Matter,<br>2016, 28, 125602.                      | or Gd):<br>1.8 | 17        |
| 62 | Quantitative Analyses of Competing Photocurrent Generation Mechanisms in Fullerene-Based Organic<br>Photovoltaics. Journal of Physical Chemistry C, 2016, 120, 16470-16477.                                                                   | 3.1            | 15        |
| 63 | Sub-10 nm copper chromium oxide nanocrystals as a solution processed p-type hole transport layer for organic photovoltaics. Journal of Materials Chemistry C, 2016, 4, 3607-3613.                                                             | 5.5            | 50        |
| 64 | Organic–inorganic hybrid semiconductor thin films deposited using molecular-atomic layer deposition (MALD). Journal of Materials Chemistry C, 2016, 4, 2382-2389.                                                                             | 5.5            | 14        |
| 65 | Comparison of conventional and inverted organic photovoltaic devices with controlled illumination area and extraction layers. Solar Energy Materials and Solar Cells, 2016, 144, 592-599.                                                     | 6.2            | 11        |
| 66 | Benzodifuran and benzodithiophene donor–acceptor polymers for bulk heterojunction solar cells.<br>Journal of Materials Chemistry A, 2015, 3, 6980-6989.                                                                                       | 10.3           | 42        |
| 67 | General method to synthesize ultrasmall metal oxide nanoparticle suspensions for hole contact layers in organic photovoltaic devices. MRS Communications, 2015, 5, 45-50.                                                                     | 1.8            | 4         |
| 68 | Solution Synthesized <i>p</i> -Type Copper Gallium Oxide Nanoplates as Hole Transport Layer for<br>Organic Photovoltaic Devices. Journal of Physical Chemistry Letters, 2015, 6, 1071-1075.                                                   | 4.6            | 59        |
| 69 | Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices. Nano Letters, 2015, 15, 7627-7632.                                                                                                                        | 9.1            | 32        |
| 70 | Relating Nongeminate Recombination to Charge-Transfer States in Bulk Heterojunction Organic<br>Photovoltaic Devices. Journal of Physical Chemistry C, 2015, 119, 19628-19633.                                                                 | 3.1            | 8         |
| 71 | Impurities and Electronic Property Variations of Natural MoS <sub>2</sub> Crystal Surfaces. ACS<br>Nano, 2015, 9, 9124-9133.                                                                                                                  | 14.6           | 240       |
| 72 | HfSe <sub>2</sub> Thin Films: 2D Transition Metal Dichalcogenides Grown by Molecular Beam Epitaxy.<br>ACS Nano, 2015, 9, 474-480.                                                                                                             | 14.6           | 195       |

| #  | Article                                                                                                                                                                                                                                                                                    | IF                                       | CITATIONS                |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|
| 73 | Charge collection in bulk heterojunction organic photovoltaic devices: An impedance spectroscopy<br>study. Applied Physics Letters, 2014, 105, .                                                                                                                                           | 3.3                                      | 43                       |
| 74 | Influence of ZnO sol–gel electron transport layer processing on BHJ active layer morphology and OPV performance. Solar Energy Materials and Solar Cells, 2014, 125, 27-32.                                                                                                                 | 6.2                                      | 18                       |
| 75 | Role of Charge Transfer States in P3HT-Fullerene Solar Cells. Journal of Physical Chemistry C, 2014,<br>118, 27681-27689.                                                                                                                                                                  | 3.1                                      | 20                       |
| 76 | Molecular Weight Dependence of the Morphology in P3HT:PCBM Solar Cells. ACS Applied Materials<br>& Interfaces, 2014, 6, 19876-19887.                                                                                                                                                       | 8.0                                      | 106                      |
| 77 | Effect of metal/bulk-heterojunction interfacial properties on organic photovoltaic device performance. Journal of Materials Chemistry A, 2014, 2, 15288.                                                                                                                                   | 10.3                                     | 11                       |
| 78 | One-Step Synthesis of ZnO Nanocrystals in <i>n</i> Butanol with Bandgap Control: Applications in<br>Hybrid and Organic Photovoltaic Devices. Journal of Physical Chemistry C, 2014, 118, 18417-18423.                                                                                      | 3.1                                      | 16                       |
| 79 | Solution Processed ZnO Hybrid Nanocomposite with Tailored Work Function for Improved Electron<br>Transport Layer in Organic Photovoltaic Devices. ACS Applied Materials & Interfaces, 2013, 5,<br>9128-9133.                                                                               | 8.0                                      | 32                       |
| 80 | Intensity and wavelength dependence of bimolecular recombination in P3HT:PCBM solar cells: A white-light biased external quantum efficiency study. Journal of Applied Physics, 2013, 113, .                                                                                                | 2.5                                      | 65                       |
| 81 | Effect of Plasmonic Au Nanoparticles on Inverted Organic Solar Cell Performance. Journal of<br>Physical Chemistry C, 2013, 117, 85-91.                                                                                                                                                     | 3.1                                      | 61                       |
| 82 | Surface photovoltage characterization of organic photovoltaic devices. Applied Physics Letters, 2013, 103, .                                                                                                                                                                               | 3.3                                      | 28                       |
| 83 | <i>In Situ</i> Chemical Oxidation of Ultrasmall <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>id="M1"&gt;<mml:mrow><mml:msub><mml:mtext>MoO</mml:mtext><mml:mi>x</mml:mi></mml:msub>in Suspensions. Journal of Nanotechnology, 2012, 2012, 1-5.</mml:mrow></mml:math<br> | nrðŵ> <td>ml<sup>16</sup>math&gt;Na</td> | ml <sup>16</sup> math>Na |
| 84 | Lowâ€Temperature Solutionâ€Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for<br>Organic Photovoltaic Devices. Advanced Energy Materials, 2012, 2, 1193-1197.                                                                                                               | 19.5                                     | 82                       |
| 85 | Effect of Zinc Oxide Electron Transport Layers on Performance and Shelf Life of Organic Bulk<br>Heterojunction Devices. Journal of Physical Chemistry C, 2011, 115, 13471-13475.                                                                                                           | 3.1                                      | 20                       |
| 86 | Molecular-Scale and Nanoscale Morphology of P3HT:PCBM Bulk Heterojunctions: Energy-Filtered TEM and Low-Dose HREM. Chemistry of Materials, 2011, 23, 907-912.                                                                                                                              | 6.7                                      | 132                      |
| 87 | Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment. Journal of Materials Chemistry, 2011, 21, 1721-1729.                                                                                                                    | 6.7                                      | 145                      |
| 88 | Effect of device architecture on hybrid zinc oxide nanoparticle:poly(3-hexylthiophene) blend solar cell performance and stability. Organic Electronics, 2011, 12, 1258-1263.                                                                                                               | 2.6                                      | 22                       |
| 89 | Hsu, Vaia, and Trionfi Reply:. Physical Review Letters, 2011, 106, .                                                                                                                                                                                                                       | 7.8                                      | 1                        |
| 90 | Development of Non-acidic Poly(ethylene dioxythiophene):poly(styrene sulfonate) for Organic and<br>Hybrid Photovoltaic Devices. Materials Research Society Symposia Proceedings, 2011, 1348, 152201.                                                                                       | 0.1                                      | 0                        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Open-Circuit Voltage Improvement in Hybrid ZnO–Polymer Photovoltaic Devices With Oxide<br>Engineering. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1587-1594.                      | 2.9 | 25        |
| 92  | Preferred heteroepitaxial orientations of ZnO nanorods on Ag. Journal of Materials Research, 2010, 25, 1352-1361.                                                                                        | 2.6 | 7         |
| 93  | Organic/Inorganic Hybrids for Solar Energy Generation. MRS Bulletin, 2010, 35, 422-428.                                                                                                                  | 3.5 | 46        |
| 94  | Electron Beam-Induced Damage of Alkanethiolate Self-Assembled Monolayers Adsorbed on GaAs (001):<br>A Static SIMS Investigation. Journal of Physical Chemistry C, 2010, 114, 5400-5409.                  | 3.1 | 20        |
| 95  | Comparison of Chemical Lithography Using Alkanethiolate Self-Assembled Monolayers on GaAs (001)<br>and Au. Langmuir, 2010, 26, 4523-4528.                                                                | 3.5 | 14        |
| 96  | Electron-Beam-Induced Damage of Alkanethiolate Self-Assembled Monolayers (SAMs): Dependence on<br>Monolayer Structure and Substrate Conductivity. Journal of Physical Chemistry C, 2010, 114, 9362-9369. | 3.1 | 11        |
| 97  | High frequency impedance spectroscopy on ZnO nanorod arrays. Journal of Applied Physics, 2010, 107, 064312.                                                                                              | 2.5 | 10        |
| 98  | Surface chemistry and surface electronic properties of ZnO single crystals and nanorods. Journal of<br>Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 328-335.                   | 2.1 | 25        |
| 99  | In-situ synthesis and thermal-electrical properties of CP2- polyimide/pristine and amine-functionalized carbon nanofiber composites. , 2009, , .                                                         |     | 0         |
| 100 | Nanocrystal Layer Deposition: Surface-Mediated Templating of Cadmium Sulfide Nanocrystals on Zinc<br>Oxide Architectures. Journal of Physical Chemistry C, 2009, 113, 16329-16336.                       | 3.1 | 42        |
| 101 | Improved Efficiency in Poly(3-hexylthiophene)/Zinc Oxide Solar Cells via Lithium Incorporation.<br>Journal of Physical Chemistry C, 2009, 113, 17608-17612.                                              | 3.1 | 21        |
| 102 | Molecular Orientation in Octanedithiol and Hexadecanethiol Monolayers on GaAs and Au Measured<br>by Infrared Spectroscopic Ellipsometry. Langmuir, 2009, 25, 919-923.                                    | 3.5 | 37        |
| 103 | Direct Measurement of the Percolation Probability in Carbon Nanofiber-Polyimide Nanocomposites.<br>Physical Review Letters, 2009, 102, 116601.                                                           | 7.8 | 34        |
| 104 | Optimization of ZnO Nanorod Array Morphology for Hybrid Photovoltaic Devices. Journal of Physical<br>Chemistry C, 2009, 113, 15778-15782.                                                                | 3.1 | 56        |
| 105 | Impact of interfacial polymer morphology on photoexcitation dynamics and device performance in P3HT/ZnO heterojunctions. Journal of Materials Chemistry, 2009, 19, 4609.                                 | 6.7 | 58        |
| 106 | Impact of contact evolution on the shelf life of organic solar cells. Journal of Materials Chemistry, 2009, 19, 7638.                                                                                    | 6.7 | 165       |
| 107 | ZnO Nanorodâ^'Thermoplastic Polyurethane Nanocomposites: Morphology and Shape Memory<br>Performance. Macromolecules, 2009, 42, 8933-8942.                                                                | 4.8 | 41        |
| 108 | Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide. Applied Physics Letters, 2009, 95, .                           | 3.3 | 66        |

| #   | Article                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Photocurrent Enhancement in Polythiophene―and Alkanethiolâ€Modified ZnO Solar Cells. Advanced<br>Materials, 2008, 20, 4755-4759.                                              | 21.0 | 115       |
| 110 | Chemical kinetics and mass transport effects in solution-based selective-area growth of ZnO nanorods. Journal of Crystal Growth, 2008, 310, 584-593.                          | 1.5  | 21        |
| 111 | Zinc Oxide Growth Morphology on Self-Assembled Monolayer Modified Silver Surfaces. Langmuir, 2008, 24, 5375-5381.                                                             | 3.5  | 15        |
| 112 | Tunable Arrays of ZnO Nanorods and Nanoneedles via Seed Layer and Solution Chemistry. Crystal<br>Growth and Design, 2008, 8, 2036-2040.                                       | 3.0  | 49        |
| 113 | Effect of ZnO Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells. Journal of<br>Physical Chemistry C, 2008, 112, 9544-9547.                             | 3.1  | 111       |
| 114 | Thermalâ^'Electrical Character of in Situ Synthesized Polyimide-Grafted Carbon Nanofiber Composites.<br>Macromolecules, 2008, 41, 8053-8062.                                  | 4.8  | 58        |
| 115 | ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells. Nano Letters, 2008, 8, 1501-1505.                                                                       | 9.1  | 623       |
| 116 | Correlated Piezoelectric and Electrical Properties in Individual ZnO Nanorods. Nano Letters, 2008, 8, 2204-2209.                                                              | 9.1  | 82        |
| 117 | Au â^• Ag and Auâ^•Pd molecular contacts to GaAs. Journal of Vacuum Science & Technology B, 2008, 26, 1597-1601.                                                              | 1.3  | 6         |
| 118 | Absence of elastic clamping in quantitative piezoelectric force microscopy measurements of nanostructures. Applied Physics Letters, 2008, 93, .                               | 3.3  | 4         |
| 119 | Direct imaging of current paths in multiwalled carbon nanofiber polymer nanocomposites using conducting-tip atomic force microscopy. Journal of Applied Physics, 2008, 104, . | 2.5  | 38        |
| 120 | Polarity and piezoelectric response of solution grown zinc oxide nanocrystals on silver. Journal of Applied Physics, 2007, 101, 014316.                                       | 2.5  | 66        |
| 121 | Ballistic electron and photocurrent transport in Au-molecular layer-GaAs diodes. Journal of Applied<br>Physics, 2007, 102, .                                                  | 2.5  | 11        |
| 122 | Effect of Polymer Processing on the Performance of Poly(3-hexylthiophene)/ZnO Nanorod<br>Photovoltaic Devices. Journal of Physical Chemistry C, 2007, 111, 16640-16645.       | 3.1  | 235       |
| 123 | Control of ZnO nanorod array alignment synthesized via seeded solution growth. Journal of Crystal<br>Growth, 2007, 304, 80-85.                                                | 1.5  | 82        |
| 124 | Luminescent properties of solution-grown ZnO nanorods. Applied Physics Letters, 2006, 88, 252103.                                                                             | 3.3  | 120       |
| 125 | Formation of Alkanethiol and Alkanedithiol Monolayers on GaAs(001). Langmuir, 2006, 22, 3627-3632.                                                                            | 3.5  | 74        |
| 126 | Additive Patterning of Conductors and Superconductors by Solution Stamping Nanolithography.<br>Small, 2006, 2, 75-79.                                                         | 10.0 | 5         |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Sequential Nucleation and Growth of Complex Nanostructured Films. Advanced Functional Materials, 2006, 16, 335-344.                                                                                                                  | 14.9 | 216       |
| 128 | Molecular monolayer modification of the cathode in organic light-emitting diodes. Applied Physics<br>Letters, 2006, 89, 223511.                                                                                                      | 3.3  | 16        |
| 129 | Spatial organization of ZnO nanorods on surfaces via organic templating. , 2005, , .                                                                                                                                                 |      | 3         |
| 130 | Soft-Contact Optical Lithography Using Transparent Elastomeric Stamps and Application to<br>Nanopatterned Organic Light-Emitting Devices. Advanced Functional Materials, 2005, 15, 1435-1439.                                        | 14.9 | 49        |
| 131 | Soft lithography contacts to organics. Materials Today, 2005, 8, 42-54.                                                                                                                                                              | 14.2 | 26        |
| 132 | Improving organic/electrode interface in organic light-emitting diodes by soft contact lamination.<br>Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and<br>Nanosystems, 2005, 219, 1-9. | 0.1  | 0         |
| 133 | Directed Spatial Organization of Zinc Oxide Nanorods. Nano Letters, 2005, 5, 83-86.                                                                                                                                                  | 9.1  | 187       |
| 134 | Ballistic Electron Emission Microscopy Studies of Au/Molecule/n-GaAs Diodes. Journal of Physical Chemistry B, 2005, 109, 6252-6256.                                                                                                  | 2.6  | 33        |
| 135 | Probing Occupied States of the Molecular Layer in Auâ^'Alkanedithiolâ^'GaAs Diodes. Journal of Physical<br>Chemistry B, 2005, 109, 5719-5723.                                                                                        | 2.6  | 24        |
| 136 | High-Efficiency Soft-Contact-Laminated Polymer Light-Emitting Devices with Patterned Electrodes.<br>Advanced Materials, 2004, 16, 2040-2045.                                                                                         | 21.0 | 39        |
| 137 | Organic light-emitting diodes formed by soft contact lamination. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 429-433.                                                                | 7.1  | 126       |
| 138 | Impurity effects on photoluminescence in lateral epitaxially overgrown GaN. Journal of Electronic Materials, 2003, 32, 322-326.                                                                                                      | 2.2  | 3         |
| 139 | Three-Dimensional and Multilayer Nanostructures Formed by Nanotransfer Printing. Nano Letters, 2003, 3, 1223-1227.                                                                                                                   | 9.1  | 262       |
| 140 | Spatial distribution of yellow luminescence related deep levels in GaN. Applied Physics Letters, 2003, 83, 4172-4174.                                                                                                                | 3.3  | 17        |
| 141 | Electrical Contacts to Molecular Layers by Nanotransfer Printing. Nano Letters, 2003, 3, 913-917.                                                                                                                                    | 9.1  | 243       |
| 142 | Intensity and phase mapping of guided light in LiNbO_3 waveguides with an interferometric near-field scanning optical microscope. Applied Optics, 2003, 42, 7149.                                                                    | 2.1  | 4         |
| 143 | Direct imaging of multimode interference in a channel waveguide. Optics Letters, 2003, 28, 399.                                                                                                                                      | 3.3  | 14        |
| 144 | Near-field scanning optical microscopy imaging of multimode interference. Optics Letters, 2003, 28, 1111.                                                                                                                            | 3.3  | 1         |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | A microscope for imaging, spectroscopy, and lithography at the nanometer scale: Combination of a two-photon laser scanning microscope and an atomic force microscope. Review of Scientific Instruments, 2003, 74, 1211-1216.                      | 1.3 | 3         |
| 146 | Effect of dislocations on local transconductance in AlGaN/GaN heterostructures as imaged by scanning gate microscopy. Applied Physics Letters, 2003, 83, 4559-4561.                                                                               | 3.3 | 8         |
| 147 | Nature of electrical contacts in a metal–molecule–semiconductor system. Journal of Vacuum Science<br>& Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and<br>Phenomena, 2003, 21, 1928.             | 1.6 | 47        |
| 148 | Fabrication of Polymer Photonic Crystals by Two-Photon Nanolithography. Materials Research<br>Society Symposia Proceedings, 2003, 776, 8321.                                                                                                      | 0.1 | 1         |
| 149 | Dislocation and morphology control during molecular-beam epitaxy of AlGaN/GaN heterostructures directly on sapphire substrates. Applied Physics Letters, 2002, 81, 1456-1458.                                                                     | 3.3 | 35        |
| 150 | High mobility AlGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy on<br>semi-insulating GaN templates prepared by hydride vapor phase epitaxy. Journal of Applied Physics, 2002,<br>92, 338-345.                           | 2.5 | 73        |
| 151 | Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates. Applied Physics Letters, 2002, 81, 79-81.                                                                   | 3.3 | 283       |
| 152 | Scanning Kelvin force microscopy imaging of surface potential variations near threading dislocations in GaN. Applied Physics Letters, 2002, 81, 3579-3581.                                                                                        | 3.3 | 46        |
| 153 | Near-field scanning optical microscope studies of the anisotropic stress variations in patterned SiN membranes. Journal of Applied Physics, 2002, 91, 646-651.                                                                                    | 2.5 | 12        |
| 154 | Direct measurement of the guided modes in LiNbO3 waveguides. Applied Physics Letters, 2002, 80, 2239-2241.                                                                                                                                        | 3.3 | 26        |
| 155 | High-resolution transfer printing on GaAs surfaces using alkane dithiol monolayers. Journal of<br>Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics<br>Processing and Phenomena, 2002, 20, 2853. | 1.6 | 87        |
| 156 | The Effect of Growth Stoichiometry on the GaN Dislocation Core Structure. Materials Research Society Symposia Proceedings, 2002, 743, L2.5.1.                                                                                                     | 0.1 | 4         |
| 157 | Local imaging of photonic structures: image contrast from impedance mismatch. Optics Letters, 2002, 27, 415.                                                                                                                                      | 3.3 | 9         |
| 158 | Terahertz near-field imaging. Physics in Medicine and Biology, 2002, 47, 3727-3734.                                                                                                                                                               | 3.0 | 24        |
| 159 | Recent Progress in GaN-Based Superlattices for Near-Infrared Intersubband Transitions. Physica Status<br>Solidi (B): Basic Research, 2002, 234, 817-821.                                                                                          | 1.5 | 8         |
| 160 | Terahertz pulse propagation through small apertures. Applied Physics Letters, 2001, 79, 907-909.                                                                                                                                                  | 3.3 | 115       |
| 161 | Surface morphology and electronic properties of dislocations in AlGaN/GaN heterostructures.<br>Journal of Electronic Materials, 2001, 30, 110-114.                                                                                                | 2.2 | 16        |
| 162 | Impurity band in the interfacial region of GaN films grown by hydride vapor phase epitaxy. Journal of Electronic Materials, 2001, 30, 115-122.                                                                                                    | 2.2 | 9         |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Near-field scanning optical microscopy studies of electronic and photonic materials and devices.<br>Materials Science and Engineering Reports, 2001, 33, 1-50.                                                              | 31.8 | 63        |
| 164 | Growth of GaN on SiC(0001) by Molecular Beam Epitaxy. Physica Status Solidi A, 2001, 188, 595-599.                                                                                                                          | 1.7  | 10        |
| 165 | Collection-mode near-field imaging with 0.5-THz pulses. IEEE Journal of Selected Topics in Quantum<br>Electronics, 2001, 7, 600-607.                                                                                        | 2.9  | 108       |
| 166 | Spatial variation of electrical properties in lateral epitaxially overgrown GaN. Applied Physics Letters, 2001, 79, 761-763.                                                                                                | 3.3  | 18        |
| 167 | Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Applied Physics<br>Letters, 2001, 78, 1685-1687.                                                                                         | 3.3  | 279       |
| 168 | Carrier density imaging of lateral epitaxially overgrown GaN using scanning confocal Raman microscopy. Applied Physics Letters, 2001, 79, 3086-3088.                                                                        | 3.3  | 17        |
| 169 | Effect of growth stoichiometry on the electrical activity of screw dislocations in GaN films grown by molecular-beam epitaxy. Applied Physics Letters, 2001, 78, 3980-3982.                                                 | 3.3  | 116       |
| 170 | Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope. Journal of Applied Physics, 2001, 89, 2801-2807.                                                            | 2.5  | 17        |
| 171 | Effect of Anisotropic Strain on the Crosshatch Electrical Activity in Relaxed GeSi Films. Physical<br>Review Letters, 2001, 86, 3598-3601.                                                                                  | 7.8  | 11        |
| 172 | Anisotropic Disorder in High-Mobility 2D Heterostructures and Its Correlation to Electron Transport. Physical Review Letters, 2001, 87, 126803.                                                                             | 7.8  | 33        |
| 173 | Nature of the highly conducting interfacial layer in GaN films. Applied Physics Letters, 2000, 77, 2873-2875.                                                                                                               | 3.3  | 36        |
| 174 | High-mobility AlGaN/GaN heterostructures grown by molecular-beam epitaxy on GaN templates<br>prepared by hydride vapor phase epitaxy. Applied Physics Letters, 2000, 77, 2888-2890.                                         | 3.3  | 99        |
| 175 | Temperature dependence of dislocation photoresponse in relaxed GeSi films. Applied Physics Letters, 2000, 76, 1294-1296.                                                                                                    | 3.3  | 5         |
| 176 | Microstructure dependence of nanometre corrosion in Al-Ni-Y glassy alloys. Philosophical Magazine<br>Letters, 2000, 80, 85-94.                                                                                              | 1.2  | 15        |
| 177 | Nanocrystalline Al[sub 87]Ni[sub 8.7]Y[sub 4.3] and Al[sub 90]Fe[sub 5]Gd[sub 5] Alloys that Retain the<br>Localized Corrosion Resistance of the Amorphous State. Electrochemical and Solid-State Letters,<br>1999, 2, 267. | 2.2  | 31        |
| 178 | Microstructural defects in bicrystal substrates and their influence on yttrium barium copper oxide<br>grain boundary Josephson junctions. IEEE Transactions on Applied Superconductivity, 1999, 9, 3413-3416.               | 1.7  | 4         |
| 179 | Topographic and electronic studies of wedge-shape surface defects on AlGaAs/GaAs films grown on Ge<br>substrates. Applied Physics Letters, 1999, 75, 2111-2113.                                                             | 3.3  | 13        |
| 180 | A variable cryogenic temperature near-field scanning optical microscope. Review of Scientific<br>Instruments, 1999, 70, 3355-3361.                                                                                          | 1.3  | 8         |

| #   | Article                                                                                                                                                                            | lF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Direct Measurement of Surface Defect Level Distribution Associated with GaAs Antiphase Boundaries.<br>Physical Review Letters, 1999, 82, 612-615.                                  | 7.8 | 8         |
| 182 | Electrostatic force microscopy studies of surface defects on GaAs/Ge films. Journal of Applied Physics, 1999, 85, 2465-2472.                                                       | 2.5 | 45        |
| 183 | Scanning force microscopy studies of GaAs films grown on offcut Ge substrates. Journal of<br>Electronic Materials, 1998, 27, 1010-1016.                                            | 2.2 | 16        |
| 184 | Nanometer scale polarimetry studies using a near-field scanning optical microscope. Applied Optics, 1998, 37, 84.                                                                  | 2.1 | 35        |
| 185 | Theory of probing a photonic crystal with transmission near-field optical microscopy. Physical Review B, 1998, 58, 2131-2141.                                                      | 3.2 | 19        |
| 186 | Self-organization of (In,Ga)As/GaAs quantum dots on relaxed (In,Ga)As films. Applied Physics Letters,<br>1998, 73, 2164-2166.                                                      | 3.3 | 21        |
| 187 | Direct imaging of submicron-scale defect-induced birefringence in SrTiO3 bicrystals. Journal of Applied Physics, 1998, 84, 189-193.                                                | 2.5 | 11        |
| 188 | Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson<br>junctions. Applied Physics Letters, 1997, 70, 1882-1884.                            | 3.3 | 19        |
| 189 | Continuum model description of thin-film growth morphology. Physical Review E, 1997, 56, 1522-1530.                                                                                | 2.1 | 2         |
| 190 | A shear force feedback control system for near-field scanning optical microscopes without lock-in detection. Review of Scientific Instruments, 1997, 68, 3093-3095.                | 1.3 | 9         |
| 191 | Local characterization of transmission properties of a two-dimensional photonic crystal. Physical Review B, 1997, 55, 10878-10882.                                                 | 3.2 | 30        |
| 192 | Near-Field Scanning Optical Microscopy Studies of Materials and Devices. MRS Bulletin, 1997, 22, 27-30.                                                                            | 3.5 | 2         |
| 193 | Vibration dynamics of tapered optical fiber probes. Journal of Applied Physics, 1997, 81, 1623-1627.                                                                               | 2.5 | 31        |
| 194 | Anomalous index contrast due to point source illumination in scanning optical microscopy. Journal of Applied Physics, 1997, 81, 2488-2491.                                         | 2.5 | 11        |
| 195 | Origins of Contrast in Near-Field Scanning Optical Microscopy Photovoltage Images of Cu(In,Ga)Se2<br>Solar Cells. Materials Research Society Symposia Proceedings, 1997, 472, 209. | 0.1 | Ο         |
| 196 | Resolution and contrast in near-field photocurrent imaging of defects on semiconductors. Journal of Applied Physics, 1997, 82, 748-755.                                            | 2.5 | 15        |
| 197 | Near-field scanning optical microscopy studies of Cu(In,Ga)Se2 solar cells. Applied Physics Letters, 1997, 70, 3555-3557.                                                          | 3.3 | 28        |
| 198 | Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals.<br>Journal of Applied Physics, 1996, 80, 1085-1093.                                   | 2.5 | 29        |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Influence of Ga vs As prelayers on GaAs/Ge growth morphology. Journal of Electronic Materials, 1996, 25, 1009-1013.                                                                                           | 2.2 | 11        |
| 200 | Scaling of surface roughness in a heterogeneous film growth system:GexSi1â^'xon Si. Physical Review B,<br>1996, 53, R7610-R7613.                                                                              | 3.2 | 13        |
| 201 | Uniform deposition of YBa2Cu3O7 thin films over an 8 inch diameter area by a 90° offâ€axis sputtering<br>technique. Applied Physics Letters, 1996, 69, 3911-3913.                                             | 3.3 | 33        |
| 202 | An impedance based non ontact feedback control system for scanning probe microscopes. Review of Scientific Instruments, 1996, 67, 1468-1471.                                                                  | 1.3 | 44        |
| 203 | Studies of electrically active defects in relaxed GeSi films using a nearâ€field scanning optical microscope. Journal of Applied Physics, 1996, 79, 7743-7750.                                                | 2.5 | 19        |
| 204 | <title>Surface science applied to lasers: near-field optical microscopy</title> . , 1995, 2547, 279.                                                                                                          |     | 2         |
| 205 | A nonoptical tip–sample distance control method for nearâ€field scanning optical microscopy using<br>impedance changes in an electromechanical system. Review of Scientific Instruments, 1995, 66, 3177-3181. | 1.3 | 94        |
| 206 | Near-field photoconductivity: Application to carrier transport in InGaAsP quantum well lasers.<br>Applied Physics Letters, 1994, 65, 2654-2656.                                                               | 3.3 | 67        |
| 207 | Room-temperature deposition of interfacial contact layers for organic photovoltaics. SPIE<br>Newsroom, 0, , .                                                                                                 | 0.1 | 0         |