
Meyling h Cheok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6138096/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Machine learning identifies the independent role of dysplasia in the prediction of response to chemotherapy in AML. Leukemia, 2022, 36, 656-663.	7.2	6
2	Prognostic impact of <i>ABCA3</i> expression in adult and pediatric acute myeloid leukemia: an ALFA-ELAMO2 joint study. Blood Advances, 2022, 6, 2773-2777.	5.2	3
3	Ex vivo drug sensitivity profilingâ€guided treatment of a relapsed pediatric mixedâ€phenotype acute leukemia with venetoclax and azacitidine. Pediatric Blood and Cancer, 2022, 69, e29678.	1.5	3
4	Involvement of ORAI1/SOCE in Human AML Cell Lines and Primary Cells According to ABCB1 Activity, LSC Compartment and Potential Resistance to Ara-C Exposure. International Journal of Molecular Sciences, 2022, 23, 5555.	4.1	5
5	A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. Nature Medicine, 2022, 28, 1212-1223.	30.7	104
6	Bimodal expression of RHOH during myelomonocytic differentiation: Implications for the expansion of AML differentiation therapy. EJHaem, 2021, 2, 196-210.	1.0	1
7	Transcriptomic and genomic heterogeneity in blastic plasmacytoid dendritic cell neoplasms: from ontogeny to oncogenesis. Blood Advances, 2021, 5, 1540-1551.	5.2	35
8	Targeting RUNX1 in acute myeloid leukemia: preclinical innovations and therapeutic implications. Expert Opinion on Therapeutic Targets, 2021, 25, 299-309.	3.4	15
9	Plasmacytoid dendritic cells proliferation associated with acute myeloid leukemia: phenotype profile and mutation landscape. Haematologica, 2021, 106, 3056-3066.	3.5	28
10	Genome-wide association study identifies susceptibility loci for acute myeloid leukemia. Nature Communications, 2021, 12, 6233.	12.8	17
11	Multiparametric Flow Cytometry Evaluation of CD200L/CD200R- LSC/NK Synapse Including Leukemia Stem Cell (LSC) Fraction As a Potential Therapeutic Target and Marker of NK Cell Exhaustion in Pediatric AML-Conect-AML French Collaborative Network. Blood, 2021, 138, 2375-2375.	1.4	0
12	Clofarabine Improves Relapse-Free Survival of Acute Myeloid Leukemia in Younger Adults with Micro-Complex Karyotype. Cancers, 2020, 12, 88.	3.7	4
13	Biomarkers of Gemtuzumab Ozogamicin Response for Acute Myeloid Leukemia Treatment. International Journal of Molecular Sciences, 2020, 21, 5626.	4.1	20
14	Horizontal meta-analysis identifies common deregulated genes across AML subgroups providing a robust prognostic signature. Blood Advances, 2020, 4, 5322-5335.	5.2	8
15	Vitamin D Receptor Controls Cell Stemness in Acute Myeloid Leukemia and in Normal Bone Marrow. Cell Reports, 2020, 30, 739-754.e4.	6.4	32
16	Mutational profile and benefit of gemtuzumab ozogamicin in acute myeloid leukemia. Blood, 2020, 135, 542-546.	1.4	62
17	The stem cell-associated gene expression signature allows risk stratification in pediatric acute myeloid leukemia. Leukemia, 2019, 33, 348-357.	7.2	44
18	The nuclear hypoxia-regulated NLUCAT1 long non-coding RNA contributes to an aggressive phenotype in lung adenocarcinoma through regulation of oxidative stress. Oncogene, 2019, 38, 7146-7165.	5.9	75

#	Article	IF	CITATIONS
19	Clinical Significance of ABCB1 in Acute Myeloid Leukemia: A Comprehensive Study. Cancers, 2019, 11, 1323.	3.7	26
20	Flow Cytometry to Estimate Leukemia Stem Cells in Primary Acute Myeloid Leukemia and in Patient-derived-xenografts, at Diagnosis and Follow Up. Journal of Visualized Experiments, 2018, , .	0.3	7
21	A Novel Predictor of Response to Gemtuzumab Ozogamicin Therapy in AML Provides Strategies for Sensitization of Leukemia Stem Cells in Individual Patients. Blood, 2018, 132, 2765-2765.	1.4	2
22	A 17-gene-expression profile to improve prognosis prediction in childhood acute myeloid leukemia. Oncotarget, 2018, 9, 33869-33870.	1.8	4
23	Impact of CNA on AML prognosis. Oncotarget, 2018, 9, 12540-12541.	1.8	1
24	Stemness Signature in AML: GEP with 17 Genes Score Versus Leukemic Stem Cell (LSC) Quantification By Multiparameter Flow Cytometry (MFC). Blood, 2018, 132, 4009-4009.	1.4	0
25	TET2 exon 2 skipping is an independent favorable prognostic factor for cytogenetically normal acute myelogenous leukemia (AML). Leukemia Research, 2017, 56, 21-28.	0.8	6
26	Architectural and functional heterogeneity of hematopoietic stem/progenitor cells in non-del(5q) myelodysplastic syndromes. Blood, 2017, 129, 484-496.	1.4	22
27	Copy-number analysis identified new prognostic marker in acute myeloid leukemia. Leukemia, 2017, 31, 555-564.	7.2	34
28	Oncogene- and drug resistance-associated alternative exon usage in acute myeloid leukemia (AML). Oncotarget, 2016, 7, 2889-2909.	1.8	19
29	A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature, 2016, 540, 433-437.	27.8	617
30	Tetraspanin CD81 is an adverse prognostic marker in acute myeloid leukemia. Oncotarget, 2016, 7, 62377-62385.	1.8	20
31	Architectural and Functional Heterogeneity of Hematopoietic Stem/Progenitor Cells in Non-Del(5q) Myelodysplastic Syndromes. Blood, 2016, 128, 3153-3153.	1.4	0
32	Classification of <scp>CEBPA</scp> mutated acute myeloid leukemia by <scp>GATA2</scp> mutations. American Journal of Hematology, 2015, 90, E93-4.	4.1	12
33	Defective NK Cells in Acute Myeloid Leukemia Patients at Diagnosis Are Associated with Blast Transcriptional Signatures of Immune Evasion. Journal of Immunology, 2015, 195, 2580-2590.	0.8	68
34	CD38 in Hairy Cell Leukemia Is a Marker of Poor Prognosis and a New Target for Therapy. Cancer Research, 2015, 75, 3902-3911.	0.9	36
35	<i>IDH1/2</i> but not <i>DNMT3A</i> mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the Acute Leukemia French Association. Oncotarget, 2015, 6, 42345-42353.	1.8	92
36	MPAgenomics: an R package for multi-patient analysis of genomic markers. BMC Bioinformatics, 2014, 15, 394.	2.6	2

#	Article	IF	CITATIONS
37	Inversely to DNMT3A, IDH1/IDH2 Are Good Targets for Monitoring Minimal Residual Disease (MRD) in Acute Myeloid Leukemia (AML): A Pilot Study of the ALFA Group. Blood, 2014, 124, 2327-2327.	1.4	1
38	Clinical impact of gene mutations and lesions detected by SNP-array karyotyping in acute myeloid leukemia patients in the context of gemtuzumab ozogamicin treatment: Results of the ALFA-0701 trial. Oncotarget, 2014, 5, 916-932.	1.8	47
39	Skipping of ATP-Binding Cassette Transporter A3 Exon 19 in AML Cells Is an Independent Prognostic Factor in Patients with Normal Cytogenetics. Blood, 2014, 124, 2324-2324.	1.4	0
40	Prognostic Analysis of GATA2 Mutations in CEBPA-Mutated Acute Myeloid Leukemia. Blood, 2014, 124, 2360-2360.	1.4	0
41	TET2 Exon 2 Skipping Confers Sensitivity to AraC and Is an Independent Favorable Prognostic Factor in AML Patients Treated with Intensive Chemotherapy. Blood, 2014, 124, 68-68.	1.4	0
42	Genomic Landscape of Pediatric CBF-AML By SNP-Array Karyotyping and Extensive Mutational Analysis. Blood, 2014, 124, 1007-1007.	1.4	0
43	<i>Neurofibromatosisâ€l</i> gene deletions and mutations in de novo adult acute myeloid leukemia. American Journal of Hematology, 2013, 88, 306-311.	4.1	43
44	New-generation sequencing (NGS) in hematologic oncology laboratories. Hematologie, 2013, 19, 112-122.	0.0	2
45	Pharmacogenomic considerations of xenograft mouse models of acute leukemia. Pharmacogenomics, 2012, 13, 1759-1772.	1.3	3
46	Genetic polymorphisms in <i><scp>ARID</scp>5B</i> , <i><scp>CEBPE</scp></i> , <i><scp>IKZF</scp>1</i> and <i><scp>CDKN</scp>2A</i> in relation with risk of acute lymphoblastic leukaemia in adults: a <scp>G</scp> roup for <scp>R</scp> esearch on <scp>A</scp> dult <scp>A</scp> cute <scp>L</scp> ymphoblastic <scp>L</scp> eukaemia (GRAALL) study. British Journal of Haematology, 2012, 159, 599-613.	2.5	18
47	DEK and WT1 Affect Alternative Splicing of Genes Involved in Hematopoietic Cell Lineage and Resistance to Chemotherapy in Acute Myeloid Leukemia Cells Blood, 2012, 120, 2392-2392.	1.4	0
48	Somatic deletions of genes regulating MSH2 protein stability cause DNA mismatch repair deficiency and drug resistance in human leukemia cells. Nature Medicine, 2011, 17, 1298-1303.	30.7	133
49	SNP Array Analysis in Acute Myeloid Leukemia Reveals Frequent and Recurrent Acquired Genetic Alterations Linked to Prognosis: a Study of the ALFA Group. Blood, 2011, 118, 2533-2533.	1.4	0
50	Thiopurine pathway. Pharmacogenetics and Genomics, 2010, 20, 573-574.	1.5	89
51	Incidence and prognostic value of TET2 alterations in de novo acute myeloid leukemia achieving complete remission. Blood, 2010, 116, 1132-1135.	1.4	121
52	Promoter Polymorphisms in the β-2 Adrenergic Receptor Are Associated With Drug-Induced Gene Expression Changes and Response in Acute Lymphoblastic Leukemia. Clinical Pharmacology and Therapeutics, 2010, 88, 854-861.	4.7	15
53	Prognostic value of minimal residual disease by real-time quantitative PCR in acute myeloid leukemia with CBFB-MYH11 rearrangement: the French experience. Leukemia, 2010, 24, 1386-1388.	7.2	20
54	Activity of Ladanein on Leukemia Cell Lines and Its Occurrence in <i>Marrubium vulgare</i> . Planta Medica, 2010, 76, 86-87.	1.3	27

#	Article	IF	CITATIONS
55	Deletion of the Tumor Suppressor Gene NF1 Is Found In 3.5% of 485 De Novo Adult Myeloid Leukemia and Is Correlated with Unfavourable Cytogenetic: On Behalf of the ALFA Group. Blood, 2010, 116, 4171-4171.	1.4	0
56	C020 Prevalence of TET2 mutations in MDS. Leukemia Research, 2009, 33, S43-S44.	0.8	0
57	Genetic Polymorphism of Inosine Triphosphate Pyrophosphatase Is a Determinant of Mercaptopurine Metabolism and Toxicity During Treatment for Acute Lymphoblastic Leukemia. Clinical Pharmacology and Therapeutics, 2009, 85, 164-172.	4.7	196
58	Pharmacogenomics in acute myeloid leukemia. Pharmacogenomics, 2009, 10, 1839-1851.	1.3	17
59	Pharmacogenetics in Acute Lymphoblastic Leukemia. Seminars in Hematology, 2009, 46, 39-51.	3.4	55
60	A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncology, The, 2009, 10, 125-134.	10.7	826
61	High-dose Methotrexate: The Rationale…. Journal of Pediatric Hematology/Oncology, 2009, 31, 224-225.	0.6	3
62	TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood, 2009, 114, 3285-3291.	1.4	264
63	Association of TET2 Alterations with NPM1 Mutations and Prognostic Value in De Novo Acute Myeloid Leukemia (AML) Blood, 2009, 114, 163-163.	1.4	4
64	Genome Wide SNP Analysis Reveals Frequent Cryptic Clonal Chromosomal Aberrations Including Uniparental Disomy (UPD) in Waldenstrom's Macroglobulinemia Blood, 2009, 114, 3932-3932.	1.4	2
65	Acromio-humeral Interval during Elevation when Supraspinatus is Deficient. IFMBE Proceedings, 2009, , 2110-2113.	0.3	0
66	The SWI/SNF Chromatin-Remodeling Complex and Glucocorticoid Resistance in Acute Lymphoblastic Leukemia. Journal of the National Cancer Institute, 2008, 100, 1792-1803.	6.3	61
67	Antileukemic drug effects in childhood acute lymphoblastic leukemia. Expert Review of Clinical Pharmacology, 2008, 1, 401-413.	3.1	1
68	Transporter-Mediated Protection against Thiopurine-Induced Hematopoietic Toxicity. Cancer Research, 2008, 68, 4983-4989.	0.9	124
69	In Vivo Response to Methotrexate Forecasts Outcome of Acute Lymphoblastic Leukemia and Has a Distinct Gene Expression Profile. PLoS Medicine, 2008, 5, e83.	8.4	75
70	Expression of SMARCB1 modulates steroid sensitivity in human lymphoblastoid cells: identification of a promoter snp that alters PARP1 binding and SMARCB1 expression. Human Molecular Genetics, 2007, 16, 2261-2271.	2.9	38
71	Inosine-Triphosphate-Pyrophosphatase Genotype Is a Determinant of Severe Fever with Neutropenia Following Treatment of Acute Lymphoblastic Leukemia with Combination Chemotherapy That Includes Mercaptopurine Adjusted for Thiopurine-S-Methyltransferase Genotype Blood, 2007, 110, 2827-2827.	1.4	0
72	PHARMACOGENOMICS OF ACUTE LEUKEMIA. Annual Review of Pharmacology and Toxicology, 2006, 46, 317-353.	9.4	37

#	Article	IF	CITATIONS
73	The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood, 2006, 107, 769-776.	1.4	126
74	Expression of the outcome predictor in acute leukemia 1 (OPAL1) gene is not an independent prognostic factor in patients treated according to COALL or St Jude protocols. Blood, 2006, 108, 1984-1990.	1.4	20
75	Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nature Reviews Cancer, 2006, 6, 117-129.	28.4	205
76	Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells. British Journal of Cancer, 2006, 94, 93-100.	6.4	35
77	Gene expression and thioguanine nucleotide disposition in acute lymphoblastic leukemia after in vivo mercaptopurine treatment. Blood, 2005, 106, 1778-1785.	1.4	53
78	Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell, 2005, 7, 375-386.	16.8	150
79	Lymphoid gene expression as a predictor of risk of secondary brain tumors. Genes Chromosomes and Cancer, 2005, 42, 107-116.	2.8	30
80	Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. Journal of Clinical Investigation, 2005, 115, 110-117.	8.2	16
81	Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. Journal of Clinical Investigation, 2005, 115, 110-117.	8.2	129
82	Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. Journal of Clinical Investigation, 2005, 115, 477-477.	8.2	0
83	Gene-Expression Patterns in Drug-Resistant Acute Lymphoblastic Leukemia Cells and Response to Treatment. New England Journal of Medicine, 2004, 351, 533-542.	27.0	565
84	Acute lymphoblastic leukemia with TEL-AML1 fusion has lower expression of genes involved in purine metabolism and lower de novo purine synthesis. Blood, 2004, 104, 1435-1441.	1.4	38
85	Identification of Gene Expression Profiles in Acute Lymphoblastic Leukemia Cells That Discriminate Intracellular Thioguanine Nucleotide Accumulation in ALL Cells after In Vivo Treatment with Mercaptopurine Blood, 2004, 104, 453-453.	1.4	5
86	Folate Pathway Gene Expression Differs in Genetic Subtypes of Acute Lymphoblastic Leukemia and Influences Methotrexate Pharmacodynamics Blood, 2004, 104, 452-452.	1.4	0
87	Genetic Polymorphisms in the Promoter Region of the beta-2 Adrenergic Receptor Are Associated with the Early Response of Acute Lymphoblastic Leukemia to Chemotherapy Blood, 2004, 104, 1959-1959.	1.4	0
88	Expression arrays illuminate a way forward for mantle cell lymphoma. Cancer Cell, 2003, 3, 100-102.	16.8	4
89	Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nature Genetics, 2003, 34, 85-90.	21.4	239
90	Review of pregnancy labeling of prescription drugs: Is the current system adequate to inform of risks?. American Journal of Obstetrics and Gynecology, 2002, 187, 333-339.	1.3	102