Nicole C Rust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6138031/publications.pdf

Version: 2024-02-01

304743 4,903 36 22 h-index citations papers

33 g-index 43 43 43 4253 citing authors all docs docs citations times ranked

395702

#	Article	IF	CITATIONS
1	Priority coding in the visual system. Nature Reviews Neuroscience, 2022, 23, 376-388.	10.2	19
2	Ritalin as a causal perturbation. Trends in Cognitive Sciences, 2022, 26, 542-543.	7.8	O
3	Identifying Objects and Remembering Images: Insights From Deep Neural Networks. Current Directions in Psychological Science, 2022, 31, 316-323.	5.3	2
4	A call for more clarity around causality in neuroscience. Trends in Neurosciences, 2022, 45, 654-655.	8.6	18
5	Pinpointing the neural signatures of single-exposure visual recognition memory. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
6	Remembering the Past to See the Future. Annual Review of Vision Science, 2021, 7, 349-365.	4.4	11
7	The Citation Diversity Statement: A Practice of Transparency, A Way of Life. Trends in Cognitive Sciences, 2020, 24, 669-672.	7.8	82
8	Understanding Image Memorability. Trends in Cognitive Sciences, 2020, 24, 557-568.	7.8	38
9	Visual novelty, curiosity, and intrinsic reward in machine learning and the brain. Current Opinion in Neurobiology, 2019, 58, 167-174.	4.2	44
10	The integration of visual and target signals in V4 and IT during visual object search. Journal of Neurophysiology, 2019, 122, 2522-2540.	1.8	2
11	Rethinking assumptions about how trial and nuisance variability impact neural task performance in a fast-processing regime. Journal of Neurophysiology, 2019, 121, 115-130.	1.8	7
12	Population response magnitude variation in inferotemporal cortex predicts image memorability. ELife, 2019, 8, .	6.0	39
13	A neural correlate of image memorability in inferotemporal cortex. Journal of Vision, 2019, 19, 91c.	0.3	0
14	Inferotemporal cortex multiplexes behaviorally-relevant target match signals and visual representations in a manner that minimizes their interference. PLoS ONE, 2018, 13, e0200528.	2.5	7
15	Single-exposure visual memory judgments are reflected in inferotemporal cortex. ELife, 2018, 7, .	6.0	41
16	Do rats see like we see?. ELife, 2017, 6, .	6.0	0
17	Neural Quadratic Discriminant Analysis: Nonlinear Decoding with V1-Like Computation. Neural Computation, 2016, 28, 2291-2319.	2.2	23
18	Dynamic Target Match Signals in Perirhinal Cortex Can Be Explained by Instantaneous Computations That Act on Dynamic Input from Inferotemporal Cortex. Journal of Neuroscience, 2014, 34, 11067-11084.	3.6	14

#	Article	IF	CITATIONS
19	Quantifying the signals contained in heterogeneous neural responses and determining their relationships with task performance. Journal of Neurophysiology, 2014, 112, 1584-1598.	1.8	17
20	Signals in inferotemporal and perirhinal cortex suggest an untangling of visual target information. Nature Neuroscience, 2013, 16, 1132-1139.	14.8	107
21	Balanced Increases in Selectivity and Tolerance Produce Constant Sparseness along the Ventral Visual Stream. Journal of Neuroscience, 2012, 32, 10170-10182.	3.6	65
22	How Does the Brain Solve Visual Object Recognition?. Neuron, 2012, 73, 415-434.	8.1	1,390
23	Dissociation of Neuronal and Psychophysical Responses to Local and Global Motion. Current Biology, 2011, 21, 2023-2028.	3.9	58
24	Ambiguity and invariance: two fundamental challenges for visual processing. Current Opinion in Neurobiology, 2010, 20, 382-388.	4.2	51
25	Selectivity and Tolerance ("Invarianceâ€) Both Increase as Visual Information Propagates from Cortical Area V4 to IT. Journal of Neuroscience, 2010, 30, 12978-12995.	3.6	300
26	Spike-triggered neural characterization. Journal of Vision, 2006, 6, 13.	0.3	336
27	How MT cells analyze the motion of visual patterns. Nature Neuroscience, 2006, 9, 1421-1431.	14.8	483
28	In praise of artifice. Nature Neuroscience, 2005, 8, 1647-1650.	14.8	208
29	Spatiotemporal Elements of Macaque V1 Receptive Fields. Neuron, 2005, 46, 945-956.	8.1	388
30	Do We Know What the Early Visual System Does?. Journal of Neuroscience, 2005, 25, 10577-10597.	3.6	563
31	Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions. Neural Computation, 2004, 16, 223-250.	2.2	256
32	A Reciprocal Relationship between Reliability and Responsiveness in Developing Visual Cortical Neurons. Journal of Neuroscience, 2002, 22, 10519-10523.	3.6	24
33	Genetic Comparison of Seizure Control by Norepinephrine and Neuropeptide Y. Journal of Neuroscience, 2001, 21, 7764-7769.	3.6	30
34	Ethanol-Associated Behaviors of Mice Lacking Norepinephrine. Journal of Neuroscience, 2000, 20, 3157-3164.	3.6	92
35	Characterization of a Phosphoinositide-mediated Odor Transduction Pathway Reveals Plasma Membrane Localization of an Inositol 1,4,5-Trisphosphate Receptor in Lobster Olfactory Receptor Neurons. Journal of Biological Chemistry, 2000, 275, 20450-20457.	3.4	48
36	Norepinephrine-Deficient Mice Have Increased Susceptibility to Seizure-Inducing Stimuli. Journal of Neuroscience, 1999, 19, 10985-10992.	3.6	124