Roberto Jorge Botelho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6137750/publications.pdf

Version: 2024-02-01

62 papers 4,508 citations

33 h-index 57 g-index

72 all docs 72 docs citations

72 times ranked 4927 citing authors

#	Article	IF	CITATIONS
1	Aggregation and Size Attributes Analysis of Unadsorbed and Adjuvant-adsorbed Antigens using a Multispectral Imaging Flow Cytometer Platform. Journal of Pharmaceutical Sciences, 2022, 111, 672-679.	3.3	2
2	Fyn and TOM1L1 are recruited to clathrin-coated pits and regulate Akt signaling. Journal of Cell Biology, 2022, 221, .	5.2	17
3	Aluminum hydroxide adjuvant diverts the uptake and trafficking of genetically detoxified pertussis toxin to lysosomes in macrophages. Molecular Microbiology, 2022, 117, 1173-1195.	2.5	3
4	Inhibition of lipid kinase PIKfyve reveals a role for phosphatase Inpp4b in the regulation of PI(3)P-mediated lysosome dynamics through VPS34 activity. Journal of Biological Chemistry, 2022, 298, 102187.	3.4	0
5	Phagosome resolution regenerates lysosomes and maintains the degradative capacity in phagocytes. Journal of Cell Biology, 2021, 220, .	5.2	40
6	Detection of Plasma Membrane Phosphoinositide Dynamics Using Genetically Encoded Fluorescent Protein Probes. Methods in Molecular Biology, 2021, 2251, 73-89.	0.9	1
7	Phagosome maturation in macrophages: Eat, digest, adapt, and repeat. Advances in Biological Regulation, 2021, 82, 100832.	2.3	24
8	Reactive oxygen species prevent lysosome coalescence during PIKfyve inhibition. PLoS ONE, 2021, 16, e0259313.	2.5	9
9	Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease. Scientific Reports, 2021, 11, 23315.	3.3	10
10	Phagocytosis: what's on the menu?. Biochemistry and Cell Biology, 2019, 97, 21-29.	2.0	28
11	Biogenesis of lysosomeâ€related organelles complexâ€1 (BORC) regulates late endosomal/lysosomal size through PIKfyveâ€dependent phosphatidylinositolâ€3,5â€bisphosphate. Traffic, 2019, 20, 674-696.	2.7	30
12	Iron overload inhibits late stage autophagic flux leading to insulin resistance. EMBO Reports, 2019, 20, e47911.	4.5	61
13	Lysosome Fission: Planning for an Exit. Trends in Cell Biology, 2019, 29, 635-646.	7.9	66
14	The Lysosome Signaling Platform: Adapting With the Times. Frontiers in Cell and Developmental Biology, 2019, 7, 113.	3.7	111
15	Enhanced translation expands the endo-lysosome size and promotes antigen presentation during phagocyte activation. PLoS Biology, 2019, 17, e3000535.	5. 6	49
16	Lysophosphatidic acid represses autophagy in prostate carcinoma cells. Biochemistry and Cell Biology, 2019, 97, 387-396.	2.0	9
17	The lipid acyltransferase LYCAT controls phosphatidylinositolâ€3,4,5â€trisphosphate (PIP3) signaling. FASEB Journal, 2019, 33, 489.1.	0.5	1
18	Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence. Journal of Cell Science, 2018, 131, .	2.0	86

#	Article	IF	Citations
19	Lysosome remodelling and adaptation during phagocyte activation. Cellular Microbiology, 2018, 20, e12824.	2.1	56
20	pH of endophagosomes controls association of their membranes with Vps34 and PtdIns(3)P levels. Journal of Cell Biology, 2018, 217, 329-346.	5.2	39
21	The PH domain from the Toxoplasma gondii PH-containing protein-1 (TgPH1) serves as an ectopic reporter of phosphatidylinositol 3-phosphate in mammalian cells. PLoS ONE, 2018, 13, e0198454.	2.5	4
22	The big and intricate dreams of little organelles: Embracing complexity in the study of membrane traffic. Traffic, 2017, 18, 567-579.	2.7	11
23	The acyltransferase LYCAT controls specific phosphoinositides and related membrane traffic. Molecular Biology of the Cell, 2017, 28, 161-172.	2.1	52
24	Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box. BioEssays, 2017, 39, 1700121.	2.5	50
25	The Lipid Kinase PIKfyve Coordinates the Neutrophil Immune Response through the Activation of the Rac GTPase. Journal of Immunology, 2017, 199, 2096-2105.	0.8	31
26	Selective regulation of clathrin-mediated epidermal growth factor receptor signaling and endocytosis by phospholipase C and calcium. Molecular Biology of the Cell, 2017, 28, 2802-2818.	2.1	39
27	Quantitative Immunofluorescence to Study Phagosome Maturation. Methods in Molecular Biology, 2017, 1519, 113-123.	0.9	1
28	Phagocytosis: Hungry, Hungry Cells. Methods in Molecular Biology, 2017, 1519, 1-16.	0.9	42
29	Quantifying Phagocytosis by Immunofluorescence and Microscopy. Methods in Molecular Biology, 2017, 1519, 43-53.	0.9	2
30	Phagocytosis Enhances Lysosomal and Bactericidal Properties by Activating the Transcription Factor TFEB. Current Biology, 2016, 26, 1955-1964.	3.9	97
31	Radiolabeling and Quantification of Cellular Levels of Phosphoinositides by High Performance Liquid Chromatography-coupled Flow Scintillation. Journal of Visualized Experiments, 2016, , .	0.3	10
32	mTOR controls lysosome tubulation and antigen presentation in macrophages and dendritic cells. Molecular Biology of the Cell, 2016, 27, 321-333.	2.1	96
33	The Phosphoinositideâ€Gated Lysosomal Ca ²⁺ Channel, TRPML1, Is Required for Phagosome Maturation. Traffic, 2015, 16, 1010-1026.	2.7	85
34	The Fab1/PIKfyve Phosphoinositide Phosphate Kinase Is Not Necessary to Maintain the pH of Lysosomes and of the Yeast Vacuole. Journal of Biological Chemistry, 2015, 290, 9919-9928.	3.4	46
35	<scp>PIKfyve</scp> Inhibition Interferes with Phagosome and Endosome Maturation in Macrophages. Traffic, 2014, 15, 1143-1163.	2.7	98
36	BioEssays in phosphoinositides: A special collection. BioEssays, 2014, 36, 123-124.	2.5	0

#	Article	IF	CITATIONS
37	Vac14 Protein Multimerization Is a Prerequisite Step for Fab1 Protein Complex Assembly and Function. Journal of Biological Chemistry, 2013, 288, 9363-9372.	3.4	24
38	Vac14 multimerization is required for Fab1 complex assembly and function. FASEB Journal, 2013, 27, 1019.5.	0.5	0
39	Rab7 and Arl8 <scp>GTPases</scp> are Necessary for Lysosome Tubulation in Macrophages. Traffic, 2012, 13, 1667-1679.	2.7	118
40	Phosphatidylinositolâ€3,5â€ <i>Bis</i> phosphate: No Longer the Poor PIP ₂ . Traffic, 2012, 13, 1-8.	2.7	120
41	Phagocytosis. Current Biology, 2011, 21, R533-R538.	3.9	67
42	An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis. Journal of General Physiology, 2010, 135, i1-i1.	1.9	0
43	An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis. Journal of Cell Biology, 2009, 187, 701-714.	5.2	86
44	Localized Diacylglycerol-dependent Stimulation of Ras and Rap1 during Phagocytosis. Journal of Biological Chemistry, 2009, 284, 28522-28532.	3.4	34
45	Changing phosphoinositides "on the fly― how trafficking vesicles avoid an identity crisis. BioEssays, 2009, 31, 1127-1136.	2.5	28
46	Assembly of a Fab1 Phosphoinositide Kinase Signaling Complex Requires the Fig4 Phosphoinositide Phosphatase. Molecular Biology of the Cell, 2008, 19, 4273-4286.	2.1	120
47	Atg18 Regulates Organelle Morphology and Fab1 Kinase Activity Independent of Its Membrane Recruitment by Phosphatidylinositol 3,5-Bisphosphate. Molecular Biology of the Cell, 2007, 18, 4232-4244.	2.1	112
48	The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. Current Opinion in Cell Biology, 2005, 17, 402-408.	5.4	89
49	Phosphatidylinositol-4,5- <i>bis</i> phosphate hydrolysis directs actin remodeling during phagocytosis. Journal of Cell Biology, 2005, 169, 139-149.	5.2	227
50	Accumulation of Diacylglycerol in the Chlamydia Inclusion Vacuole. Journal of Biological Chemistry, 2005, 280, 25210-25215.	3.4	38
51	Phosphoinositide Involvement in Phagocytosis and Phagosome Maturation. Current Topics in Microbiology and Immunology, 2004, 282, 1-30.	1.1	40
52	Phagosome Maturation: A Few Bugs in the System. Journal of Membrane Biology, 2003, 193, 137-152.	2.1	115
53	Critical role for scaffolding adapter Gab2 in Fcl³R-mediated phagocytosis. Journal of Cell Biology, 2003, 161, 1151-1161.	5.2	107
54	Felic (CIP4b), a novel binding partner with the Src kinase Lyn and Cdc42, localizes to the phagocytic cup. Blood, 2003, 101, 2804-2809.	1.4	38

#	Article	IF	CITATIONS
55	Fc \hat{I}^3 R-Mediated Phagocytosis Stimulates Localized Pinocytosis in Human Neutrophils. Journal of Immunology, 2002, 169, 4423-4429.	0.8	47
56	Phagosome maturation: aging gracefully. Biochemical Journal, 2002, 366, 689-704.	3.7	610
57	The genomic structure of SYCP3, a meiosis-specific gene encoding a protein of the chromosome core. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1518, 294-299.	2.4	21
58	Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. Journal of Cell Biology, 2001, 155, 19-26.	5.2	474
59	Indirect Role for COPI in the Completion of Fcl³ Receptor-mediated Phagocytosis. Journal of Biological Chemistry, 2001, 276, 18200-18208.	3.4	22
60	Localized Biphasic Changes in Phosphatidylinositol-4,5-Bisphosphate at Sites of Phagocytosis. Journal of Cell Biology, 2000, 151, 1353-1368.	5.2	489
61	Role of COPI in Phagosome Maturation. Journal of Biological Chemistry, 2000, 275, 15717-15727.	3.4	52
62	Phagosomal Maturation, Acidification, and Inhibition of Bacterial Growth in Nonphagocytic Cells Transfected with FcγRllA Receptors. Journal of Biological Chemistry, 1999, 274, 28436-28444.	3.4	107