Thomas Reiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6137497/publications.pdf

Version: 2024-02-01

141 papers 6,147 citations

44 h-index

57758

72 g-index

157 all docs

157 docs citations

157 times ranked

7685 citing authors

#	Article	IF	Citations
1	Towards Quantitative Catalytic Lignin Depolymerization. Chemistry - A European Journal, 2011, 17, 5939-5948.	3.3	465
2	A Pretargeted PET Imaging Strategy Based on Bioorthogonal Diels–Alder Click Chemistry. Journal of Nuclear Medicine, 2013, 54, 1389-1396.	5.0	247
3	Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Science Advances, $2015,1,.$	10.3	173
4	Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nature Communications, 2013, 4, 1504.	12.8	172
5	Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance. Immunity, 2018, 49, 819-828.e6.	14.3	161
6	PET Imaging of Tumor-Associated Macrophages with ⁸⁹ Zr-Labeled High-Density Lipoprotein Nanoparticles. Journal of Nuclear Medicine, 2015, 56, 1272-1277.	5.0	145
7	Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano, 2017, 11, 5785-5799.	14.6	137
8	Ubiquitous Detection of Gram-Positive Bacteria with Bioorthogonal Magnetofluorescent Nanoparticles. ACS Nano, 2011, 5, 8834-8841.	14.6	127
9	¹⁸ F-Based Pretargeted PET Imaging Based on Bioorthogonal Diels–Alder Click Chemistry. Bioconjugate Chemistry, 2016, 27, 298-301.	3.6	127
10	Accurate measurement of pancreatic islet \hat{l}^2 -cell mass using a second-generation fluorescent exendin-4 analog. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12815-12820.	7.1	121
11	Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nature Communications, 2017, 8, 14064.	12.8	118
12	Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition. Cell, 2020, 183, 786-801.e19.	28.9	101
13	Imaging Therapeutic PARP Inhibition In Vivo through Bioorthogonally Developed Companion Imaging Agents. Neoplasia, 2012, 14, 169-IN3.	5 . 3	97
14	Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6731-E6740.	7.1	95
15	Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nature Communications, 2016, 7, 11838.	12.8	94
16	Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nature Biomedical Engineering, 2018, 2, 279-292.	22.5	94
17	High-resolution optoacoustic imaging of tissue responses to vascular-targeted therapies. Nature Biomedical Engineering, 2020, 4, 286-297.	22.5	92
18	Synthesis and In Vivo Imaging of a ¹⁸ Fâ€Labeled PARP1 Inhibitor Using a Chemically Orthogonal Scavengerâ€Assisted Highâ€Performance Method. Angewandte Chemie - International Edition, 2011, 50, 1922-1925.	13.8	91

#	Article	IF	CITATIONS
19	Optimization of a Pretargeted Strategy for the PET Imaging of Colorectal Carcinoma via the Modulation of Radioligand Pharmacokinetics. Molecular Pharmaceutics, 2015, 12, 3575-3587.	4.6	88
20	Bioorthogonal Imaging of Aurora Kinaseâ€A in Live Cells. Angewandte Chemie - International Edition, 2012, 51, 6598-6603.	13.8	85
21	A Modular Labeling Strategy for In Vivo PET and Near-Infrared Fluorescence Imaging of Nanoparticle Tumor Targeting. Journal of Nuclear Medicine, 2014, 55, 1706-1711.	5.0	85
22	Bioorthogonal Probes for Poloâ€like Kinaseâ€1 Imaging and Quantification. Angewandte Chemie - International Edition, 2011, 50, 9378-9381.	13.8	79
23	InÂVivo PET Imaging of HDL in MultipleÂAtherosclerosisÂModels. JACC: Cardiovascular Imaging, 2016, 9, 950-961.	5.3	78
24	Target engagement imaging of PARP inhibitors in small-cell lung cancer. Nature Communications, 2018, 9, 176.	12.8	75
25	Molecular Imaging of PARP. Journal of Nuclear Medicine, 2017, 58, 1025-1030.	5.0	75
26	¹⁸ F-Labeled-Bioorthogonal Liposomes for <i>In Vivo</i> Targeting. Bioconjugate Chemistry, 2013, 24, 1784-1789.	3.6	74
27	High‥ielding, Two‧tep ¹⁸ F Labeling Strategy for ¹⁸ Fâ€PARP1 Inhibitors. ChemMedChem, 2011, 6, 424-427.	3.2	73
28	Non-invasive PET Imaging of PARP1 Expression in Glioblastoma Models. Molecular Imaging and Biology, 2016, 18, 386-392.	2.6	70
29	Tumor Targeting by \hat{l}_{\pm} sub>v \hat{l}^2 sub>3-Integrin-Specific Lipid Nanoparticles Occurs <i>via</i> Phagocyte Hitchhiking. ACS Nano, 2020, 14, 7832-7846.	14.6	69
30	Targeted Brain Tumor Radiotherapy Using an Auger Emitter. Clinical Cancer Research, 2020, 26, 2871-2881.	7.0	69
31	Dual-Modality Optical/PET Imaging of PARP1 in Glioblastoma. Molecular Imaging and Biology, 2015, 17, 848-855.	2.6	66
32	Nanobody-Facilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC: Cardiovascular Imaging, 2019, 12, 2015-2026.	5.3	66
33	Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate. Bioconjugate Chemistry, 2016, 27, 1789-1795.	3.6	60
34	Specific Pathogen Detection Using Bioorthogonal Chemistry and Diagnostic Magnetic Resonance. Bioconjugate Chemistry, 2011, 22, 2390-2394.	3.6	59
35	Detection and delineation of oral cancer with a PARP1 targeted optical imaging agent. Scientific Reports, 2016, 6, 21371.	3.3	58
36	Poly(ADP-Ribose)Polymerase (PARP) Inhibitors and Radiation Therapy. Frontiers in Pharmacology, 2020, 11, 170.	3.5	57

#	Article	IF	Citations
37	Bioorthogonal Smallâ€Molecule Ligands for PARP1 Imaging in Living Cells. ChemBioChem, 2010, 11, 2374-2377.	2.6	56
38	In Vivo PET Imaging of Histone Deacetylases by ¹⁸ F-Suberoylanilide Hydroxamic Acid (¹⁸ F-SAHA). Journal of Medicinal Chemistry, 2011, 54, 5576-5582.	6.4	56
39	The inverse electron demand Diels–Alder click reaction in radiochemistry. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 285-290.	1.0	53
40	A Pretargeted Approach for the Multimodal PET/NIRF Imaging of Colorectal Cancer. Theranostics, 2016, 6, 2267-2277.	10.0	53
41	PARPi-FL - a Fluorescent PARP1 Inhibitor for Glioblastoma Imaging. Neoplasia, 2014, 16, 432-440.	5. 3	52
42	PARP-1–Targeted Radiotherapy in Mouse Models of Glioblastoma. Journal of Nuclear Medicine, 2018, 59, 1225-1233.	5.0	51
43	Imaging-assisted nanoimmunotherapy for atherosclerosis in multiple species. Science Translational Medicine, 2019, 11, .	12.4	51
44	Optical Imaging Modalities: Principles and Applications in Preclinical Research and Clinical Settings. Journal of Nuclear Medicine, 2020, 61, 1419-1427.	5.0	49
45	Radioiodinated PARP1 tracers for glioblastoma imaging. EJNMMI Research, 2015, 5, 123.	2.5	48
46	Gain-of-Function Mutant p53 R273H Interacts with Replicating DNA and PARP1 in Breast Cancer. Cancer Research, 2020, 80, 394-405.	0.9	48
47	In Vivo Imaging of GLP-1R with a Targeted Bimodal PET/Fluorescence Imaging Agent. Bioconjugate Chemistry, 2014, 25, 1323-1330.	3.6	47
48	Near-Infrared Fluorescent Probe for Imaging of Pancreatic \hat{l}^2 Cells. Bioconjugate Chemistry, 2010, 21, 1362-1368.	3.6	46
49	A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis. Journal of Controlled Release, 2017, 262, 47-57.	9.9	44
50	Microfluidic Cell Sorter (<i>i²¼</i> FCS) for On hip Capture and Analysis of Single Cells. Advanced Healthcare Materials, 2012, 1, 432-436.	7.6	43
51	Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral, oropharyngeal and oesophageal epithelial cancers. Nature Biomedical Engineering, 2020, 4, 272-285.	22.5	43
52	Effect of Small-Molecule Modification on Single-Cell Pharmacokinetics of PARP Inhibitors. Molecular Cancer Therapeutics, 2014, 13, 986-995.	4.1	42
53	Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nature Nanotechnology, 2020, 15, 398-405.	31.5	42
54	Cerenkov Luminescence Imaging for Radiation Dose Calculation of a ⁹⁰ Y-Labeled Gastrin-Releasing Peptide Receptor Antagonist. Journal of Nuclear Medicine, 2015, 56, 805-811.	5.0	39

#	Article	IF	Citations
55	PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a HumanÂAntibody Detects ClinicallyÂRelevant Atherothrombosis. Journal of the American College of Cardiology, 2018, 71, 321-335.	2.8	39
56	Efficient ¹⁸ Fâ€Labeling of Synthetic Exendinâ€4 Analogues for Imaging Beta Cells. ChemistryOpen, 2012, 1, 177-183.	1.9	38
57	Targeting Cathepsin E in Pancreatic Cancer by a Small Molecule Allows In Vivo Detection. Neoplasia, 2013, 15, 684-IN3.	5.3	36
58	Antibody with Infinite Affinity for In Vivo Tracking of Genetically Engineered Lymphocytes. Journal of Nuclear Medicine, 2018, 59, 1894-1900.	5.0	36
59	Safety and Feasibility of PARP1/2 Imaging with 18F-PARPi in Patients with Head and Neck Cancer. Clinical Cancer Research, 2020, 26, 3110-3116.	7.0	36
60	Bioorthogonal Masking of Circulating Antibody–TCO Groups Using Tetrazine-Functionalized Dextran Polymers. Bioconjugate Chemistry, 2018, 29, 538-545.	3.6	35
61	Efficient Acidâ€Catalyzed ¹⁸ F/ ¹⁹ F Fluoride Exchange of BODIPY Dyes. ChemMedChem, 2014, 9, 1368-1373.	3.2	33
62	Imaging Cardiovascular and Lung Macrophages With the Positron Emission Tomography Sensor ⁶⁴ Cu-Macrin in Mice, Rabbits, and Pigs. Circulation: Cardiovascular Imaging, 2020, 13, e010586.	2.6	32
63	Synthesis of a Fluorescently Labeled ⁶⁸ Ga-DOTA-TOC Analog for Somatostatin Receptor Targeting. ACS Medicinal Chemistry Letters, 2017, 8, 720-725.	2.8	30
64	Targeted PET imaging strategy to differentiate malignant from inflamed lymph nodes in diffuse large B-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7441-E7449.	7.1	28
65	Development of a clickable bimodal fluorescent/PET probe for in vivo imaging. EJNMMI Research, 2015, 5, 120.	2.5	27
66	Biomarker-Based PET Imaging of Diffuse Intrinsic Pontine Glioma in Mouse Models. Cancer Research, 2017, 77, 2112-2123.	0.9	27
67	Optical Imaging of PARP1 in Response to Radiation in Oral Squamous Cell Carcinoma. PLoS ONE, 2016, 11, e0147752.	2.5	26
68	Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer. Chemical Science, 2018, 9, 5646-5657.	7.4	25
69	An ⁸⁹ Zr-HDL PET Tracer Monitors Response to a CSF1R Inhibitor. Journal of Nuclear Medicine, 2020, 61, 433-436.	5.0	25
70	Side chain functionalized î-5-tetramethyl cyclopentadienyl complexes of Rh and Ir with a pendant primary amine group. Journal of Organometallic Chemistry, 2009, 694, 1934-1937.	1.8	24
71	Building Blocks for the Construction of Bioorthogonally Reactive Peptides via Solidâ€Phase Peptide Synthesis. ChemistryOpen, 2014, 3, 48-53.	1.9	24
72	Specific Targeting of Somatostatin Receptor Subtype-2 for Fluorescence-Guided Surgery. Clinical Cancer Research, 2019, 25, 4332-4342.	7.0	24

#	Article	IF	CITATIONS
73	Sonophore labeled RGD: a targeted contrast agent for optoacoustic imaging. Photoacoustics, 2017, 6, 1-8.	7.8	23
74	Metalâ€Conjugated Affinity Labels: A New Concept to Create Enantioselective Artificial Metalloenzymes. ChemistryOpen, 2013, 2, 50-54.	1.9	22
75	Multimodal Positron Emission Tomography Imaging to Quantify Uptake of ⁸⁹ Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall. Bioconjugate Chemistry, 2020, 31, 360-368.	3.6	22
76	î-6-Arene complexes of ruthenium and osmium with pendant donor functionalities. Journal of Organometallic Chemistry, 2010, 695, 2667-2672.	1.8	21
77	Nanoparticle-Mediated Measurement of Target–Drug Binding in Cancer Cells. ACS Nano, 2011, 5, 9216-9224.	14.6	21
78	Reversible Electroporation–Mediated Liposomal Doxorubicin Delivery to Tumors Can Be Monitored With ⁸⁹ Zr-Labeled Reporter Nanoparticles. Molecular Imaging, 2018, 17, 153601211774972.	1.4	21
79	Current Practice and Emerging Molecular Imaging Technologies in Oral Cancer Screening. Molecular Imaging, 2018, 17, 153601211880864.	1.4	21
80	A phase I study of a PARP1-targeted topical fluorophore for the detection of oral cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3618-3630.	6.4	21
81	Fluorescence Imaging of Peripheral Nerves by a Na _v 1.7-Targeted Inhibitor Cystine Knot Peptide. Bioconjugate Chemistry, 2019, 30, 2879-2888.	3.6	20
82	A modular approach toward producing nanotherapeutics targeting the innate immune system. Science Advances, 2021, 7, .	10.3	20
83	Development of a New Folate-Derived Ga-68-Based PET Imaging Agent. Molecular Imaging and Biology, 2017, 19, 754-761.	2.6	19
84	Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging. Nature Protocols, 2017, 12, 1472-1497.	12.0	19
85	Smartphone epifluorescence microscopy for cellular imaging of fresh tissue in low-resource settings. Biomedical Optics Express, 2020, 11, 89.	2.9	19
86	Novel latonduine derived proligands and their copper(<scp>ii</scp>) complexes show cytotoxicity in the nanomolar range in human colon adenocarcinoma cells and <i>in vitro</i> cancer selectivity. Dalton Transactions, 2019, 48, 10464-10478.	3.3	17
87	Detection and Delineation of Oral Cancer With a PARP1-Targeted Optical Imaging Agent. Molecular Imaging, 2017, 16, 153601211772378.	1.4	16
88	Discriminating radiation injury from recurrent tumor with [18F]PARPi and amino acid PET in mouse models. EJNMMI Research, 2018, 8, 59.	2.5	16
89	Acid specific dark quencher QC1 pHLIP for multi-spectral optoacoustic diagnoses of breast cancer. Scientific Reports, 2019, 9, 8550.	3.3	16
90	PARP-Targeted Auger Therapy in p53 Mutant Colon Cancer Xenograft Mouse Models. Molecular Pharmaceutics, 2021, 18, 3418-3428.	4.6	16

#	Article	IF	CITATIONS
91	Nanoemulsion-Based Delivery of Fluorescent PARP Inhibitors in Mouse Models of Small Cell Lung Cancer. Bioconjugate Chemistry, 2018, 29, 3776-3782.	3.6	15
92	Oncology-Inspired Treatment Options for COVID-19. Journal of Nuclear Medicine, 2020, 61, 1720-1723.	5.0	15
93	Fluorescence-guided resection of tumors in mouse models of oral cancer. Scientific Reports, 2020, 10, 11175.	3.3	15
94	Positron-Emission Tomographic Imaging of a Fluorine 18–Radiolabeled Poly(ADP-Ribose) Polymerase 1 Inhibitor Monitors the Therapeutic Efficacy of Talazoparib in SCLC Patient–Derived Xenografts. Journal of Thoracic Oncology, 2019, 14, 1743-1752.	1.1	14
95	Blocking of Glucagonlike Peptide-1 Receptors in the Exocrine Pancreas Improves Specificity for \hat{l}^2 -Cells in a Mouse Model of Type 1 Diabetes. Journal of Nuclear Medicine, 2019, 60, 1635-1641.	5.0	14
96	Preclinical and first-in-human-brain-cancer applications of [18F]poly (ADP-ribose) polymerase inhibitor PET/MR. Neuro-Oncology Advances, 2020, 2, vdaa119.	0.7	14
97	Auger: The future of precision medicine. Nuclear Medicine and Biology, 2021, 96-97, 50-53.	0.6	14
98	Systematically evaluating DOTATATE and FDG as PET immuno-imaging tracers of cardiovascular inflammation. Scientific Reports, 2022, 12, 6185.	3.3	14
99	Phenylalanine – a biogenic ligand with flexible η6- and η6:κ1-coordination at ruthenium(ii) centres. Dalton Transactions, 2013, 42, 8692.	3.3	13
100	Investigating the Cellular Specificity in Tumors of a Surface-Converting Nanoparticle by Multimodal Imaging. Bioconjugate Chemistry, 2017, 28, 1413-1421.	3.6	13
101	Direct Imaging of Drug Distribution and Target Engagement of the PARP Inhibitor Rucaparib. Journal of Nuclear Medicine, 2018, 59, 1316-1320.	5.0	13
102	Improved radiosynthesis of 123I-MAPi, an auger theranostic agent. International Journal of Radiation Biology, 2020, , 1-7.	1.8	13
103	Leveraging PET to image folate receptor \hat{l}_{\pm} therapy of an antibody-drug conjugate. EJNMMI Research, 2018, 8, 87.	2.5	12
104	Multimodality labeling strategies for the investigation of nanocrystalline cellulose biodistribution in a mouse model of breast cancer. Nuclear Medicine and Biology, 2020, 80-81, 1-12.	0.6	12
105	Fluorine-18 labeled poly (ADP-ribose) polymerase1 inhibitor as a potential alternative to 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography in oral cancer imaging. Nuclear Medicine and Biology, 2020, 84-85, 80-87.	0.6	12
106	Synthesis of the first radiolabeled ¹⁸⁸ Re <i>N</i> â€heterocyclic carbene complex and initial studies on its potential use in radiopharmaceutical applications. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 441-447.	1.0	11
107	cis-Tetrachlorido-bis(indazole)osmium(iv) and its osmium(iii) analogues: paving the way towards the cis-isomer of the ruthenium anticancer drugs KP1019 and/or NKP1339. Dalton Transactions, 2017, 46, 11925-11941.	3.3	11
108	Noninvasive PET Imaging of CDK4/6 Activation in Breast Cancer. Journal of Nuclear Medicine, 2020, 61, 437-442.	5.0	11

#	Article	IF	CITATIONS
109	Pharmacological Inhibition of the Voltage-Gated Sodium Channel NaV1.7 Alleviates Chronic Visceral Pain in a Rodent Model of Irritable Bowel Syndrome. ACS Pharmacology and Translational Science, 2021, 4, 1362-1378.	4.9	10
110	Fluorescence labeling of a NaV1.7-targeted peptide for near-infrared nerve visualization. EJNMMI Research, 2020, 10, 49.	2.5	10
111	Synthetic strategies for efficient conjugation of organometallic complexes with pendant protein reactive markers. Journal of Organometallic Chemistry, 2013, 744, 82-91.	1.8	9
112	[18F]FE-OTS964: a Small Molecule Targeting TOPK for In Vivo PET Imaging in a Glioblastoma Xenograft Model. Molecular Imaging and Biology, 2019, 21, 705-712.	2.6	8
113	Inhibition of Microtubule Dynamics in Cancer Cells by Indole-Modified Latonduine Derivatives and Their Metal Complexes. Inorganic Chemistry, 2022, 61, 1456-1470.	4.0	8
114	Specific Binding of Liposomal Nanoparticles through Inverse Electronâ€Demand Diels–Alder Click Chemistry. ChemistryOpen, 2017, 6, 615-619.	1.9	7
115	Optoacoustic Imaging of Glucagon-like Peptide-1 Receptor with a Near-Infrared Exendin-4 Analog. Journal of Nuclear Medicine, 2021, 62, 839-848.	5.0	7
116	Sensors and Inhibitors for the Detection of Ataxia Telangiectasia Mutated (ATM) Protein Kinase. Molecular Pharmaceutics, 2021, 18, 2470-2481.	4.6	7
117	Harnessing the Bioorthogonal Inverse Electron Demand Diels-Alder Cycloaddition for Pretargeted PET Imaging. Journal of Visualized Experiments, 2015, , e52335.	0.3	6
118	A oneâ€pot radiosynthesis of [¹⁸ F]PARPi. Journal of Labelled Compounds and Radiopharmaceuticals, 2020, 63, 419-425.	1.0	6
119	Imaging Early-Stage Metastases Using an 18F-Labeled VEGFR-1-Specific Single Chain VEGF Mutant. Molecular Imaging and Biology, 2021, 23, 340-349.	2.6	6
120	Nearâ€Infrared Intraoperative Chemiluminescence Imaging. ChemMedChem, 2016, 11, 1978-1982.	3.2	5
121	Integrating nanomedicine and imaging. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170110.	3.4	5
122	A Comprehensive Procedure to Evaluate the In Vivo Performance of Cancer Nanomedicines. Journal of Visualized Experiments, 2017, , .	0.3	5
123	TOPKi-NBD: a fluorescent small molecule for tumor imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1003-1010.	6.4	5
124	Leveraging synthetic chlorins for bio-imaging applications. Chemical Communications, 2020, 56, 12608-12611.	4.1	5
125	Combined PARP1-targeted nuclear contrast and reflectance contrast enhances confocal microscopic detection of basal cell carcinoma. Journal of Nuclear Medicine, 2021, , jnumed.121.262600.	5.0	5
126	Evaluation of [18 F]-ATRi as PET tracer for in vivo imaging of ATR in mouse models of brain cancer. Nuclear Medicine and Biology, 2017, 48, 9-15.	0.6	4

#	Article	IF	CITATIONS
127	PET/CT Imaging with an 18F-Labeled Galactodendritic Unit in a Galectin-1–Overexpressing Orthotopic Bladder Cancer Model. Journal of Nuclear Medicine, 2020, 61, 1369-1375.	5.0	4
128	Imaging-guided revival of nanomedicine?. Nanomedicine, 2017, 12, 89-90.	3.3	3
129	Poly(ADP-ribose)polymerase1: A potential molecular marker to identify cancer during colposcopy procedures Journal of Nuclear Medicine, 2020, 62, jnumed.120.253575.	5.0	3
130	Bimodal Imaging of Mouse Peripheral Nerves with Chlorin Tracers. Molecular Pharmaceutics, 2021, 18, 940-951.	4.6	3
131	[18F]PARPi Imaging Is Not Affected by HPV Status In Vitro. Molecular Imaging, 2021, 2021, 1-10.	1.4	2
132	Rapid detection of SARS-CoV-2 using a radiolabeled antibody. Nuclear Medicine and Biology, 2021, 98-99, 69-75.	0.6	2
133	Metal-Conjugated Affinity Labels: A New Concept to Create Enantioselective Artificial Metalloenzymes. ChemistryOpen, 2013, 2, 40-40.	1.9	O
134	Microfluidic On-chip Capture-cycloaddition Reaction to Reversibly Immobilize Small Molecules or Multi-component Structures for Biosensor Applications. Journal of Visualized Experiments, 2013, , e50772.	0.3	0
135	A Novel Technique for Generating and Observing Chemiluminescence in a Biological Setting. Journal of Visualized Experiments, 2017, , .	0.3	O
136	REPLY TO LETTER TO THE EDITOR: POTENTIAL USE OF RADIOLABELED ANTIBODIES FOR IMAGING AND TREATMENT OF COVID-19. Journal of Nuclear Medicine, 2021, 62, jnumed.121.261950.	5.0	0
137	Molecular Imaging and Molecular Imaging Technologies. , 2018, , 3-27.		O
138	Smartphone-based epifluorescence microscope for fresh tissue imaging. , 2019, , .		0
139	Combining PARPi-FL fluorescence and reflectance contrast for improved detection of basal cell carcinoma (BCC)., 2021,,.		0
140	Principles and Applications of Auger-Electron Radionuclide Therapy. , 2022, , .		0
141	PARP-1 expression in melanocytic lesions: towards PARPi-FL based molecular diagnosis of melanoma. , 2022, , .		0