
Riccardo Miotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6135583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Evolution of Mining Electronic Health Records in the Era of Deep Learning. , 2022, , 55-92.		2
2	AKI in Hospitalized Patients with COVID-19. Journal of the American Society of Nephrology: JASN, 2021, 32, 151-160.	6.1	500
3	Deep learning for biomedical applications. , 2021, , 71-94.		0
4	Unsupervised Learning to Subphenotype Heart Failure Patients from Electronic Health Records. Lecture Notes in Computer Science, 2021, , 219-228.	1.3	1
5	Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach. JMIR Medical Informatics, 2021, 9, e24207.	2.6	108
6	Deep learning and the electrocardiogram: review of the current state-of-the-art. Europace, 2021, 23, 1179-1191.	1.7	111
7	Use of Physiological Data From a Wearable Device to Identify SARS-CoV-2 Infection and Symptoms and Predict COVID-19 Diagnosis: Observational Study. Journal of Medical Internet Research, 2021, 23, e26107.	4.3	91
8	Relational Learning Improves Prediction of Mortality in COVID-19 in the Intensive Care Unit. IEEE Transactions on Big Data, 2021, 7, 38-44.	6.1	10
9	Phe2vec: Automated disease phenotyping based on unsupervised embeddings from electronic health records. Patterns, 2021, 2, 100337.	5.9	19
10	Contrastive learning improves critical event prediction in COVID-19 patients. Patterns, 2021, 2, 100389.	5.9	21
11	Retrospective cohort study of clinical characteristics of 2199 hospitalised patients with COVID-19 in New York City. BMJ Open, 2020, 10, e040736.	1.9	50
12	Deep representation learning of electronic health records to unlock patient stratification at scale. Npj Digital Medicine, 2020, 3, 96.	10.9	90
13	Machine Learning in Cardiology—Ensuring Clinical Impact Lives Up to the Hype. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25, 379-390.	2.0	11
14	Sleep in the Natural Environment: A Pilot Study. Sensors, 2020, 20, 1378.	3.8	11
15	Coronavirus 2019 and People Living With Human Immunodeficiency Virus: Outcomes for Hospitalized Patients in New York City. Clinical Infectious Diseases, 2020, 71, 2933-2938.	5.8	189
16	Identifying Acute Low Back Pain Episodes in Primary Care Practice From Clinical Notes: Observational Study. JMIR Medical Informatics, 2020, 8, e16878.	2.6	19
17	Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation. Journal of Medical Internet Research, 2020, 22, e24018.	4.3	174
18	Heterogeneous Graph Embeddings of Electronic Health Records Improve Critical Care Disease Predictions. Lecture Notes in Computer Science, 2020, , 14-25.	1.3	0

RICCARDO MIOTTO

#	Article	IF	CITATIONS
19	PatientExploreR: an extensible application for dynamic visualization of patient clinical history from electronic health records in the OMOP common data model. Bioinformatics, 2019, 35, 4515-4518.	4.1	28
20	Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review. JMIR Medical Informatics, 2019, 7, e12239.	2.6	297
21	Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Briefings in Bioinformatics, 2018, 19, 656-678.	6.5	81
22	Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics, 2018, 19, 1236-1246.	6.5	1,459
23	Uncovering exposures responsible for birth season – disease effects: a global study. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 275-288.	4.4	33
24	Automated disease cohort selection using word embeddings from Electronic Health Records. , 2018, , .		29
25	Precision Medicine for Relapsed Multiple Myeloma on the Basis of an Integrative Multiomics Approach. JCO Precision Oncology, 2018, 2018, 1-17.	3.0	20
26	Trends in anesthesiology research: a machine learning approach to theme discovery and summarization. JAMIA Open, 2018, 1, 283-293.	2.0	12
27	Reflecting health: smart mirrors for personalized medicine. Npj Digital Medicine, 2018, 1, 62.	10.9	36
28	Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 2018, 71, 2668-2679.	2.8	690
29	Automated disease cohort selection using word embeddings from Electronic Health Records. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2018, 23, 145-156.	0.7	17
30	Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Briefings in Bioinformatics, 2017, 18, 105-124.	6.5	146
31	PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT. , 2017, 22, 276-287.		91
32	A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nature Genetics, 2017, 49, 1437-1449.	21.4	199
33	Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Scientific Reports, 2016, 6, 26094.	3.3	1,036
34	Replicating Cardiovascular Condition-Birth Month Associations. Scientific Reports, 2016, 6, 33166.	3.3	16
35	Deep Learning to Predict Patient Future Diseases from the Electronic Health Records. Lecture Notes in Computer Science, 2016, , 768-774.	1.3	28
36	Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, e141-e150.	4.4	70

RICCARDO MIOTTO

#	Article	IF	CITATIONS
37	A human–computer collaborative approach to identifying common data elements in clinical trial eligibility criteria. Journal of Biomedical Informatics, 2013, 46, 33-39.	4.3	38
38	eTACTS: A method for dynamically filtering clinical trial search results. Journal of Biomedical Informatics, 2013, 46, 1060-1067.	4.3	23
39	Unsupervised mining of frequent tags for clinical eligibility text indexing. Journal of Biomedical Informatics, 2013, 46, 1145-1151.	4.3	29
40	A Probabilistic Model to Combine Tags and Acoustic Similarity for Music Retrieval. ACM Transactions on Information Systems, 2012, 30, 1-29.	4.9	17
41	A Generative Context Model for Semantic Music Annotation and Retrieval. IEEE Transactions on Audio Speech and Language Processing, 2012, 20, 1096-1108.	3.2	32
42	ASIt: A Grammatical Survey of Italian Dialects and Cimbrian: Fieldwork, Data Management, and Linguistic Analysis. Communications in Computer and Information Science, 2011, , 100-103.	0.5	0
43	Statistical Music Modeling Aimed at Identification and Alignment. Studies in Computational Intelligence, 2010, , 187-212.	0.9	6
44	A Digital Library Effort to Support the Building of Grammatical Resources for Italian Dialects. Communications in Computer and Information Science, 2010, , 89-100.	0.5	8
45	Content-Based Cover Song Identification in Music Digital Libraries. Communications in Computer and Information Science, 2010, , 195-204.	0.5	1
46	Automatic Identification of Music Works Through Audio Matching. Lecture Notes in Computer Science, 2007, , 124-135.	1.3	8