Jason Brunt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6135400/publications.pdf

Version: 2024-02-01

516710 752698 1,515 20 16 20 h-index citations g-index papers 21 21 21 1644 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). Journal of Applied Microbiology, 2007, 102, 1654-1664.	3.1	304
2	Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss,) Tj ETQq0 0 0 rgBT /0	Overlock 1	0 т <u>f 5</u> 0 702 то
3	Use of a probiotic to control lactococcosis and streptococcosis in rainbow trout, <i>Oncorhynchus mykiss</i> (Walbaum). Journal of Fish Diseases, 2005, 28, 693-701.	1.9	185
4	The development of probiotics for the control of multiple bacterial diseases of rainbow trout, <i>Oncorhynchus mykiss</i> (Walbaum). Journal of Fish Diseases, 2007, 30, 573-579.	1.9	163
5	Efficacy of in-feed probiotics against <i>Aeromonas bestiarum</i> and <i>lchthyophthirius multifiliis</i> skin infections in rainbow trout (<i>Oncorhynchus mykiss</i> , Walbaum). Journal of Applied Microbiology, 2008, 105, 723-732.	3.1	89
6	Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut. Nature Microbiology, 2019, 4, 2393-2404.	13.3	83
7	Identification of a novel botulinum neurotoxin gene cluster in <i>Enterococcus</i> . FEBS Letters, 2018, 592, 310-317.	2.8	82
8	Subcellular components of <i>Vibrio harveyi</i> and probiotics induce immune responses in rainbow trout, <i>Oncorhynchus mykiss</i> (Walbaum), against <i>V. harveyi</i> Journal of Fish Diseases, 2008, 31, 579-590.	1.9	52
9	Proteomic analysis of rainbow trout (Oncorhynchus mykiss, Walbaum) serum after administration of probiotics in diets. Veterinary Immunology and Immunopathology, 2008, 121, 199-205.	1.2	42
10	Functional Characterisation of Germinant Receptors in Clostridium botulinum and Clostridium sporogenes Presents Novel Insights into Spore Germination Systems. PLoS Pathogens, 2014, 10, e1004382.	4.7	40
11	Rapid Affinity Immunochromatography Column-Based Tests for Sensitive Detection of <i>Clostridium botulinum</i> Neurotoxins and <i>Escherichia coli</i> O157. Applied and Environmental Microbiology, 2010, 76, 4143-4150.	3.1	35
12	Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins, 2020, 12, 586.	3.4	32
13	Apertures in the Clostridium sporogenes spore coat and exosporium align to facilitate emergence of the vegetative cell. Food Microbiology, 2015, 51, 45-50.	4.2	25
14	Diversity of the Germination Apparatus in Clostridium botulinum Groups I, II, III, and IV. Frontiers in Microbiology, 2016, 7, 1702.	3.5	25
15	Analysis of the Germination of Individual Clostridium sporogenes Spores with and without Germinant Receptors and Cortex-Lytic Enzymes. Frontiers in Microbiology, 2017, 8, 2047.	3.5	21
16	Pan-Genomic Analysis of Clostridium botulinum Group II (Non-Proteolytic C. botulinum) Associated with Foodborne Botulism and Isolated from the Environment. Toxins, 2020, 12, 306.	3.4	20
17	Spore germination of the psychrotolerant, red meat spoiler, Clostridium frigidicarnis. Letters in Applied Microbiology, 2011, 53, 92-97.	2.2	17
18	Architecture and Self-Assembly of Clostridium sporogenes and Clostridium botulinum Spore Surfaces Illustrate a General Protective Strategy across Spore Formers. MSphere, 2020, 5, .	2.9	12

#	Article	IF	CITATIONS
19	Synergistic interaction between pH and NaCl in the limits of germination and outgrowth of Clostridium sporogenes and Group I Clostridium botulinum vegetative cells and spores after heat treatment. Food Microbiology, 2022, 106, 104055.	4.2	7
20	The orphan germinant receptor protein GerXAO (but not GerX3b) is essential for L-alanine induced germination in Clostridium botulinum Group II. Scientific Reports, 2018, 8, 7060.	3.3	6