Corinne Cayrol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6134552/publications.pdf

Version: 2024-02-01

304743 477307 4,579 30 22 29 h-index citations g-index papers 31 31 31 5903 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells, 2022, 11, 107.	4.1	41
2	Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine, 2022, 156, 155891.	3.2	75
3	Innate lymphoid cells in asthmatic patients. Journal of Allergy and Clinical Immunology, 2019, 143, 1739-1741.	2.9	7
4	Interleukinâ€33 (<scp>lL</scp> â€33): A nuclear cytokine from the <scp>lL</scp> â€1 family. Immunological Reviews, 2018, 281, 154-168.	6.0	586
5	Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nature Immunology, 2018, 19, 375-385.	14.5	255
6	Isolation and Culture of Mouse Lung ILC2s. Bio-protocol, 2018, 8, e3032.	0.4	1
7	ILâ€33â€expanded human Vγ9VÎ 2 TÂcells have antiâ€lymphoma effect in a mouse tumor model. European Journa of Immunology, 2017, 47, 2137-2141.	al 2.9	17
8	Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells. Scientific Reports, 2016, 6, 34255.	3.3	74
9	TCRVγ9 γÎ^T Cell Response to IL-33: A CD4 T Cell–Dependent Mechanism. Journal of Immunology, 2016, 196, 493-502.	0.8	17
10	Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15502-15507.	7.1	312
11	IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Current Opinion in Immunology, 2014, 31, 31-37.	5.5	560
12	Mechanisms of IL-33 processing and secretion: differences and similarities between IL-1 family members. European Cytokine Network, 2012, 23, 120-127.	2.0	95
13	Label-free Quantification and Shotgun Analysis of Complex Proteomes by One-dimensional SDS-PAGE/NanoLC-MS. Molecular and Cellular Proteomics, 2012, 11, 527-539.	3.8	65
14	IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1673-1678.	7.1	498
15	Direct interaction between causative genes of DYT1 and DYT6 primary dystonia. Annals of Neurology, 2010, 68, 549-553.	5.3	84
16	The THAP-Zinc Finger Protein THAP1 Associates with Coactivator HCF-1 and O-GlcNAc Transferase. Journal of Biological Chemistry, 2010, 285, 13364-13371.	3.4	97
17	The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9021-9026.	7.1	600
18	Molecular mimicry between ILâ€33 and KSHV for attachment to chromatin through the H2A–H2B acidic pocket. EMBO Reports, 2008, 9, 1006-1012.	4.5	258

#	Article	IF	CITATIONS
19	Mascot File Parsing and Quantification (MFPaQ), a New Software to Parse, Validate, and Quantify Proteomics Data Generated by ICAT and SILAC Mass Spectrometric Analyses. Molecular and Cellular Proteomics, 2007, 6, 1621-1637.	3.8	78
20	The THAP–zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes. Blood, 2007, 109, 584-594.	1.4	128
21	THAP1 is a nuclear proapoptotic factor that links prostate-apoptosis-response-4 (Par-4) to PML nuclear bodies. Oncogene, 2003, 22, 2432-2442.	5.9	143
22	The $\hat{1}^2$ 2-adaptin clathrin adaptor interacts with the mitotic checkpoint kinase BubR1. Biochemical and Biophysical Research Communications, 2002, 298, 720-730.	2.1	31
23	Role of c-myc Regulation in Zta-Mediated Induction of the Cyclin-Dependent Kinase Inhibitors p21 and p27 and Cell Growth Arrest. Virology, 2001, 284, 159-169.	2.4	46
24	p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. Oncogene, 1998, 16, 311-320.	5.9	307
25	Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21. Oncogene, 1998, 17, 2437-2444.	5.9	134
26	GO/G1 Growth Arrest Mediated by a Region Encompassing the Basic Leucine Zipper (bZIP) Domain of the Epstein-Barr Virus Transactivator Zta. Journal of Biological Chemistry, 1996, 271, 31799-31802.	3.4	64
27	A subset of HLA-DR9 molecules is detected by a polymorphic monoclonal antibody on lymphoblastoid cell lines but not on peripheral blood lymphocytes. Human Immunology, 1995, 44, 19-27.	2.4	O
28	Characterization of a murine monoclonal antibody recognizing HLAâ€DQ5(1), DQ6(1) and DQ4 antigens. Tissue Antigens, 1993, 41, 165-168.	1.0	0
29	Use of transfectants to characterize a monoclonal antibody recognizing a monomorphic DR βâ€chain epitope shared by some DQ and DP molecules. Tissue Antigens, 1993, 41, 196-199.	1.0	1
30	New polymorphic HLAâ€DR epitopes recognized by three monoclonal antibodies produced against DR103 transfected L cells. Tissue Antigens, 1992, 40, 197-203.	1.0	4