## Paolo Gandellini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6133524/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | miR-550a-3p is a prognostic biomarker and exerts tumor-suppressive functions by targeting HSP90AA1 in diffuse malignant peritoneal mesothelioma. Cancer Gene Therapy, 2022, 29, 1394-1404.              | 4.6  | 3         |
| 2  | Coding the noncoding: 2 years of advances in the field of microRNAs and long noncoding RNAs.<br>Cancer Gene Therapy, 2021, 28, 355-358.                                                                 | 4.6  | 1         |
| 3  | Noncoding RNAs in the Interplay between Tumor Cells and Cancer-Associated Fibroblasts: Signals to Catch and Targets to Hit. Cancers, 2021, 13, 709.                                                     | 3.7  | 7         |
| 4  | Biological relevance and therapeutic potential of G-quadruplex structures in the human noncoding transcriptome. Nucleic Acids Research, 2021, 49, 3617-3633.                                            | 14.5 | 50        |
| 5  | Prediction of Grade Reclassification of Prostate Cancer Patients on Active Surveillance through the Combination of a Three-miRNA Signature and Selected Clinical Variables. Cancers, 2021, 13, 2433.    | 3.7  | 8         |
| 6  | miR-1227 Targets SEC23A to Regulate the Shedding of Large Extracellular Vesicles. Cancers, 2021, 13, 5850.                                                                                              | 3.7  | 2         |
| 7  | Unveiling the ups and downs of miR-205 in physiology and cancer: transcriptional and post-transcriptional mechanisms. Cell Death and Disease, 2020, 11, 980.                                            | 6.3  | 36        |
| 8  | SPOP Deregulation Improves the Radiation Response of Prostate Cancer Models by Impairing DNA Damage Repair. Cancers, 2020, 12, 1462.                                                                    | 3.7  | 8         |
| 9  | miR-1272 Exerts Tumor-Suppressive Functions in Prostate Cancer via HIP1 Suppression. Cells, 2020, 9, 435.                                                                                               | 4.1  | 11        |
| 10 | Gene expression dataset of prostate cells upon MIR205HG/LEADR modulation. Data in Brief, 2020, 29, 105139.                                                                                              | 1.0  | 4         |
| 11 | Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. Journal of Controlled Release, 2019, 308, 44-56.                          | 9.9  | 41        |
| 12 | LEADeR role of miR-205 host gene as long noncoding RNA in prostate basal cell differentiation. Nature<br>Communications, 2019, 10, 307.                                                                 | 12.8 | 44        |
| 13 | Core Biopsies from Prostate Cancer Patients in Active Surveillance Protocols Harbor PTEN and MYC Alterations. European Urology Oncology, 2019, 2, 277-285.                                              | 5.4  | 7         |
| 14 | miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair<br>through PKCε and ZEB1 inhibition. Journal of Experimental and Clinical Cancer Research, 2019, 38, 51. | 8.6  | 64        |
| 15 | Splicing modulation as novel therapeutic strategy against diffuse malignant peritoneal mesothelioma.<br>EBioMedicine, 2019, 39, 215-225.                                                                | 6.1  | 41        |
| 16 | Predicting and Understanding Cancer Response to Treatment. Disease Markers, 2018, 2018, 1-2.                                                                                                            | 1.3  | 2         |
| 17 | miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis. Cancer Letters, 2017, 395, 53-62.              | 7.2  | 80        |
| 18 | microRNAs as players and signals in the metastatic cascade: Implications for the development of novel anti-metastatic therapies. Seminars in Cancer Biology, 2017, 44, 132-140.                         | 9.6  | 42        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Antitumor activity of miR-34a in peritoneal mesothelioma relies on c-MET and AXL inhibition: persistent<br>activation of ERK and AKT signaling as a possible cytoprotective mechanism. Journal of Hematology<br>and Oncology, 2017, 10, 19.            | 17.0 | 40        |
| 20 | miR-380-5p-mediated repression of TEP1 and TSPYL5 interferes with telomerase activity and favours the<br>emergence of an "ALT-like―phenotype in diffuse malignant peritoneal mesothelioma cells. Journal of<br>Hematology and Oncology, 2017, 10, 140. | 17.0 | 23        |
| 21 | PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells. Toxicology and Applied Pharmacology, 2016, 310, 9-19.                                                                                                                | 2.8  | 33        |
| 22 | Dissecting the role of microRNAs in prostate cancer metastasis: implications for the design of novel therapeutic approaches. Cellular and Molecular Life Sciences, 2016, 73, 2531-2542.                                                                | 5.4  | 22        |
| 23 | MicroRNAs and the Response of Prostate Cancer to Anti-Cancer Drugs. Current Drug Targets, 2016, 17, 257-265.                                                                                                                                           | 2.1  | 5         |
| 24 | MicroRNAs in Cancer Management: Big Challenges for Small Molecules. BioMed Research<br>International, 2015, 2015, 1-2.                                                                                                                                 | 1.9  | 17        |
| 25 | Targeting MicroRNAs to Withstand Cancer Metastasis. Methods in Molecular Biology, 2015, 1218, 415-437.                                                                                                                                                 | 0.9  | 11        |
| 26 | Complexity in the tumour microenvironment: Cancer associated fibroblast gene expression patterns<br>identify both common and unique features of tumour-stroma crosstalk across cancer types. Seminars<br>in Cancer Biology, 2015, 35, 96-106.          | 9.6  | 85        |
| 27 | Anti-tumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma: the role of survivin. Oncotarget, 2015, 6, 13119-13132.                                                                 | 1.8  | 39        |
| 28 | Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation. Oncotarget, 2015, 6, 31441-31460.                                                        | 1.8  | 55        |
| 29 | Abstract 19: Antitumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma: the role of survivin. , 2015, , .                                                                           |      | Ο         |
| 30 | miR-205 Hinders the Malignant Interplay Between Prostate Cancer Cells and Associated Fibroblasts.<br>Antioxidants and Redox Signaling, 2014, 20, 1045-1059.                                                                                            | 5.4  | 63        |
| 31 | miRNAs in tumor radiation response: bystanders or participants?. Trends in Molecular Medicine, 2014, 20, 529-539.                                                                                                                                      | 6.7  | 40        |
| 32 | Senescent stroma promotes prostate cancer progression: The role of miRâ€⊋10. Molecular Oncology, 2014, 8, 1729-1746.                                                                                                                                   | 4.6  | 102       |
| 33 | Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells. Cell Communication and Signaling, 2014, 12, 24.                                                                                                            | 6.5  | 77        |
| 34 | miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochemical Pharmacology, 2014, 87, 579-597.                                                                                    | 4.4  | 83        |
| 35 | MicroRNA-dependent Regulation of Telomere Maintenance Mechanisms: A Field as Much Unexplored as Potentially Promising. Current Pharmaceutical Design, 2014, 20, 6404-6421.                                                                             | 1.9  | 14        |
| 36 | Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle, 2013, 12, 3526-3536.                                                                                                                                                | 2.6  | 189       |

Paolo Gandellini

| #  | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Abstract B18: MiR-205 puts the brakes on the malignant interplay between prostate cancer cells and associated fibroblasts. , 2013, , .                                                                                                                                       |      | 1         |
| 38 | MicroRNAs: Cobblestones on the Road to Cancer Metastasis. Critical Reviews in Oncogenesis, 2013, 18, 341-355.                                                                                                                                                                | 0.4  | 36        |
| 39 | MicroRNA-Mediated Control of Prostate Cancer Metastasis: Implications for the Identification of Novel Biomarkers and Therapeutic Targets. Current Medicinal Chemistry, 2013, 20, 1566-1584.                                                                                  | 2.4  | 15        |
| 40 | RNA Interference-Mediated Validation of Survivin and Apollon/BRUCE as New Therapeutic Targets for<br>Cancer Therapy. Current Topics in Medicinal Chemistry, 2012, 12, 69-78.                                                                                                 | 2.1  | 12        |
| 41 | Reciprocal Metabolic Reprogramming through Lactate Shuttle Coordinately Influences Tumor-Stroma<br>Interplay. Cancer Research, 2012, 72, 5130-5140.                                                                                                                          | 0.9  | 438       |
| 42 | miR-205 regulates basement membrane deposition in human prostate: implications for cancer development. Cell Death and Differentiation, 2012, 19, 1750-1760.                                                                                                                  | 11.2 | 77        |
| 43 | MicroRNAs as new therapeutic targets and tools in cancer. Expert Opinion on Therapeutic Targets, 2011, 15, 265-279.                                                                                                                                                          | 3.4  | 81        |
| 44 | MicroRNAs in Prostate Cancer: A Possible Role as Novel Biomarkers and Therapeutic Targets?. , 2011, ,<br>145-162.                                                                                                                                                            |      | 0         |
| 45 | miR-21: an oncomir on strike in prostate cancer. Molecular Cancer, 2010, 9, 12.                                                                                                                                                                                              | 19.2 | 189       |
| 46 | Emerging role of microRNAs in prostate cancer: implications for personalized medicine. Discovery Medicine, 2010, 9, 212-8.                                                                                                                                                   | 0.5  | 25        |
| 47 | Apollon gene silencing induces apoptosis in breast cancer cells through p53 stabilisation and caspase-3 activation. British Journal of Cancer, 2009, 100, 739-746.                                                                                                           | 6.4  | 47        |
| 48 | miR-205 Exerts Tumor-Suppressive Functions in Human Prostate through Down-regulation of Protein<br>Kinase Cε. Cancer Research, 2009, 69, 2287-2295.                                                                                                                          | 0.9  | 334       |
| 49 | Targeting the telosome: Therapeutic implications. Biochimica Et Biophysica Acta - Molecular Basis of<br>Disease, 2009, 1792, 309-316.                                                                                                                                        | 3.8  | 37        |
| 50 | Towards the definition of prostate cancer-related microRNAs: where are we now?. Trends in Molecular Medicine, 2009, 15, 381-390.                                                                                                                                             | 6.7  | 54        |
| 51 | Photochemically enhanced delivery of a cell-penetrating peptide nucleic acid conjugate targeting<br>human telomerase reverse transcriptase: effects on telomere status and proliferative potential of<br>human prostate cancer cells. Cell Proliferation, 2007, 40, 905-920. | 5.3  | 24        |
| 52 | Down-regulation of human telomerase reverse transcriptase through specific activation of RNAi<br>pathway quickly results in cancer cell growth impairment. Biochemical Pharmacology, 2007, 73,<br>1703-1714.                                                                 | 4.4  | 45        |
| 53 | Antisense oligonucleotide-mediated inhibition of hTERT, but not hTERC, induces rapid cell growth<br>decline and apoptosis in the absence of telomere shortening in human prostate cancer cells. European<br>Journal of Cancer, 2005, 41, 624-634.                            | 2.8  | 80        |
| 54 | Clusterin: A potential target for improving response to antiestrogens. International Journal of<br>Oncology, 1992, 33, 791.                                                                                                                                                  | 3.3  | 4         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | MIR205HG/LEADR Long Noncoding RNA Binds to Primed Proximal Regulatory Regions in Prostate Basal<br>Cells Through a Triplex- and Alu-Mediated Mechanism. Frontiers in Cell and Developmental Biology, 0,<br>10, . | 3.7 | 6         |