Maria Chait

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6132116/publications.pdf

Version: 2024-02-01

279798 265206 2,289 42 46 23 h-index citations g-index papers 63 63 63 1484 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sensitivity to temporal structure facilitates perceptual analysis of complex auditory scenes. Hearing Research, 2021, 400, 108111.	2.0	4
2	The effect of healthy aging on change detection and sensitivity to predictable structure in crowded acoustic scenes. Hearing Research, 2021, 399, 108074.	2.0	11
3	Reward Enhances Online Participants' Engagement With a Demanding Auditory Task. Trends in Hearing, 2021, 25, 233121652110259.	1.3	9
4	Sustained Pupil Responses Are Modulated by Predictability of Auditory Sequences. Journal of Neuroscience, 2021, 41, 6116-6127.	3.6	8
5	An online headphone screening test based on dichotic pitch. Behavior Research Methods, 2021, 53, 1551-1562.	4.0	79
6	How the brain discovers structure in sound sequences. Acoustical Science and Technology, 2020, 41, 48-53.	0.5	11
7	Does auditory processing rely on encapsulated, or domain-general computational resources?. Acoustical Science and Technology, 2020, 41, 13-15.	0.5	2
8	PPM-Decay: A computational model of auditory prediction with memory decay. PLoS Computational Biology, 2020, 16, e1008304.	3.2	15
9	Long-term implicit memory for sequential auditory patterns in humans. ELife, 2020, 9, .	6.0	28
10	PPM-Decay: A computational model of auditory prediction with memory decay., 2020, 16, e1008304.		0
11	PPM-Decay: A computational model of auditory prediction with memory decay., 2020, 16, e1008304.		0
12	PPM-Decay: A computational model of auditory prediction with memory decay., 2020, 16, e1008304.		0
13	PPM-Decay: A computational model of auditory prediction with memory decay., 2020, 16, e1008304.		0
14	Auditory figure-ground segregation is impaired by high visual load. Journal of Neuroscience, 2019, 39, 2518-18.	3.6	19
15	Rapid Ocular Responses Are Modulated by Bottom-up-Driven Auditory Salience. Journal of Neuroscience, 2019, 39, 7703-7714.	3.6	33
16	Rapid Brain Responses to Familiar vs. Unfamiliar Music – an EEG and Pupillometry study. Scientific Reports, 2019, 9, 15570.	3.3	30
17	Pupil-linked phasic arousal evoked by violation but not emergence of regularity within rapid sound sequences. Nature Communications, 2019, 10, 4030.	12.8	60
18	Pupillometry as an Objective Measure of Sustained Attention in Young and Older Listeners. Trends in Hearing, 2019, 23, 233121651988781.	1.3	30

#	Article	IF	CITATIONS
19	Great Expectations: Is there Evidence for Predictive Coding in Auditory Cortex?. Neuroscience, 2018, 389, 54-73.	2.3	281
20	Enhanced deviant responses in patterned relative to random sound sequences. Cortex, 2018, 109, 92-103.	2.4	77
21	The Cumulative Effects of Predictability on Synaptic Gain in the Auditory Processing Stream. Journal of Neuroscience, 2017, 37, 6751-6760.	3.6	52
22	Is predictability salient? A study of attentional capture by auditory patterns. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160105.	4.0	102
23	The effect of distraction on change detection in crowded acoustic scenes. Hearing Research, 2016, 341, 179-189.	2.0	11
24	Sound segregation via embedded repetition is robust to inattention Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 386-400.	0.9	27
25	Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence. Cerebral Cortex, 2016, 26, 3669-3680.	2.9	74
26	Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E616-25.	7.1	229
27	Neural dynamics of change detection in crowded acoustic scenes. Neurolmage, 2016, 126, 164-172.	4.2	21
28	Detecting and representing predictable structure during auditory scene analysis. ELife, 2016, 5, .	6.0	92
29	Multi-time resolution analysis of speech: evidence from psychophysics. Frontiers in Neuroscience, 2015, 9, 214.	2.8	51
30	Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses. Journal of Neuroscience, 2015, 35, 16046-16054.	3.6	109
31	Sensitivity to the temporal structure of rapid sound sequences — An MEG study. NeuroImage, 2015, 110, 194-204.	4.2	38
32	"Change Deafness―Arising from Inter-feature Masking within a Single Auditory Object. Journal of Cognitive Neuroscience, 2014, 26, 514-528.	2.3	9
33	Segregation of complex acoustic scenes based on temporal coherence. ELife, 2013, 2, e00699.	6.0	65
34	Cortical responses to changes in acoustic regularity are differentially modulated by attentional load. Neurolmage, 2012, 59, 1932-1941.	4.2	25
35	The Timing of Change Detection and Change Perception in Complex Acoustic Scenes. Frontiers in Psychology, 2012, 3, 396.	2.1	5
36	Detection of Appearing and Disappearing Objects in Complex Acoustic Scenes. PLoS ONE, 2012, 7, e46167.	2.5	43

#	Article	IF	CITATIONS
37	The role of temporal regularity in auditory segregation. Hearing Research, 2011, 280, 228-235.	2.0	95
38	Retroactive adjustment of perceived time. Cognition, 2011, 119, 125-130.	2.2	7
39	Brain Bases for Auditory Stimulus-Driven Figure–Ground Segregation. Journal of Neuroscience, 2011, 31, 164-171.	3.6	118
40	Neural dynamics of attending and ignoring in human auditory cortex. Neuropsychologia, 2010, 48, 3262-3271.	1.6	64
41	Auditory temporal edge detection in human auditory cortex. Brain Research, 2008, 1213, 78-90.	2.2	39
42	Processing Asymmetry of Transitions between Order and Disorder in Human Auditory Cortex. Journal of Neuroscience, 2007, 27, 5207-5214.	3.6	71
43	Delayed detection of tonal targets in background noise in dyslexia. Brain and Language, 2007, 102, 80-90.	1.6	22
44	Neural Response Correlates of Detection of Monaurally and Binaurally Created Pitches in Humans. Cerebral Cortex, 2006, 16, 835-848.	2.9	84
45	Human Auditory Cortical Processing of Changes in Interaural Correlation. Journal of Neuroscience, 2005, 25, 8518-8527.	3.6	57
46	Auditory M50 and M100 responses to broadband noise: functional implications. NeuroReport, 2004, 15, 2455-2458.	1.2	53