Marie-Dominique Filippi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutrophils scan for activated platelets to initiate inflammation. Science, 2014, 346, 1234-1238.	12.6	516
2	Hematopoietic Cell Regulation by Rac1 and Rac2 Guanosine Triphosphatases. Science, 2003, 302, 445-449.	12.6	446
3	Neutrophil transendothelial migration: updates and new perspectives. Blood, 2019, 133, 2149-2158.	1.4	136
4	Localization of Rac2 via the C terminus and aspartic acid 150 specifies superoxide generation, actin polarity and chemotaxis in neutrophils. Nature Immunology, 2004, 5, 744-751.	14.5	119
5	Asymmetrically Segregated Mitochondria Provide Cellular Memory of Hematopoietic Stem Cell Replicative History and Drive HSC Attrition. Cell Stem Cell, 2020, 26, 420-430.e6.	11.1	108
6	Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood, 2012, 120, 3563-3574.	1.4	98
7	Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood, 2019, 133, 1943-1952.	1.4	95
8	Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell, 2021, 28, 1473-1482.e7.	11.1	87
9	Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia. Nature Immunology, 2017, 18, 236-245.	14.5	85
10	Mechanism of Diapedesis. Advances in Immunology, 2016, 129, 25-53.	2.2	66
11	Rho GTPase Rac1 is critical for neutrophil migration into the lung. Blood, 2007, 109, 1257-1264.	1.4	63
12	The small Rho GTPase Cdc42 regulates neutrophil polarity via CD11b integrin signaling. Blood, 2009, 114, 4527-4537.	1.4	63
13	Obesity alters the long-term fitness of the hematopoietic stem cell compartment through modulation of <i>Gfi1</i> expression. Journal of Experimental Medicine, 2018, 215, 627-644.	8.5	62
14	The small GTPase Rap1b negatively regulates neutrophil chemotaxis and transcellular diapedesis by inhibiting Akt activation. Journal of Experimental Medicine, 2014, 211, 1741-1758.	8.5	55
15	p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nature Communications, 2017, 8, 14382.	12.8	35
16	Yap1-Scribble polarization is required for hematopoietic stem cell division and fate. Blood, 2020, 136, 1824-1836.	1.4	26
17	P38α/JNK signaling restrains erythropoiesis by suppressing Ezh2-mediated epigenetic silencing of Bim. Nature Communications, 2018, 9, 3518.	12.8	25
18	The Small GTPase Cdc42 Is a Major Regulator of Neutrophil Effector Functions. Frontiers in Immunology, 2020, 11, 1197.	4.8	21

Marie-Dominique Filippi

#	ARTICLE	IF	CITATIONS
19	An efficient and reproducible process for transmission electron microscopy (TEM) of rare cell populations. Journal of Immunological Methods, 2014, 404, 87-90.	1.4	20
20	Deconstructing the Complexity of TGFÎ ² Signaling in Hematopoietic Stem Cells: Quiescence and Beyond. Current Stem Cell Reports, 2016, 2, 388-397.	1.6	16
21	The deubiquitinase USP15 modulates cellular redox and is a therapeutic target in acute myeloid leukemia. Leukemia, 2022, 36, 438-451.	7.2	13
22	An Alternative Approach for Sample Preparation with Low Cell Number for TEM Analysis. Journal of Visualized Experiments, 2016, , .	0.3	8
23	Leukocyte transcellular diapedesis: Rap1b is in control. Tissue Barriers, 2015, 3, e1052185.	3.2	5
24	Hematopoietic stem cell (HSC) divisional memory: The journey of mitochondrial metabolism through HSC division. Experimental Hematology, 2021, 96, 27-34.	0.4	5
25	TGFβ signaling modifies hematopoietic acute inflammatory response to drive bone marrow failure. Haematologica, 2021, , .	3.5	4
26	Neutrophil actin regulation: MKL1 is in control. Blood, 2015, 126, 1519-1520.	1.4	3
27	Hungry Hematopoietic Stem Cells during Bacterial Infection: Fatty Acid for Food. Immunometabolism, 2022, 4, .	1.6	1
28	Single-Cell Assays Using Hematopoietic Stem and Progenitor Cells. Methods in Molecular Biology, 2019, 2029, 147-160.	0.9	0
29	Mitochondrial Morphology Controls Hematopoietic Stem Cell (HSC) Self-Renewal and Confers HSC Divisional Memory. Blood, 2018, 132, SCI-20-SCI-20.	1.4	0
30	A Durable Anatomy with Local Plasticity Enables Normal and Stress Hematopoiesis. Blood, 2021, 138, 297-297.	1.4	0
31	Mitochondrial Fate of Regenerative Hematopoietic Stem Cells Is Sequentially Controlled By Two Specific Conformations of Connexin-43. Blood, 2020, 136, 32-33.	1.4	0