Jian-Rong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131899/publications.pdf Version: 2024-02-01

IAN-RONG YANG

#	Article	IF	CITATIONS
1	Expression level is a major modifier of the fitness landscape of a protein coding gene. Nature Ecology and Evolution, 2022, 6, 103-115.	7.8	24
2	Distinct codon usage bias evolutionary patterns between weakly and strongly virulent respiratory viruses. IScience, 2022, 25, 103682.	4.1	9
3	Prediction of Antibiotic Resistance Evolution by Growth Measurement of All Proximal Mutants of Beta-Lactamase. Molecular Biology and Evolution, 2022, 39, .	8.9	3
4	Specificity of mRNA Folding and Its Association with Evolutionarily Adaptive mRNA Secondary Structures. Genomics, Proteomics and Bioinformatics, 2021, 19, 882-900.	6.9	0
5	Bidirectional Genetic Control of Phenotypic Heterogeneity and Its Implication for Cancer Drug Resistance. Molecular Biology and Evolution, 2021, 38, 1874-1887.	8.9	5
6	Alignment of Cell Lineage Trees Elucidates Genetic Programs for the Development and Evolution of Cell Types. IScience, 2020, 23, 101273.	4.1	23
7	The evolution of sex chromosome dosage compensation in animals. Journal of Genetics and Genomics, 2020, 47, 681-693.	3.9	7
8	Dissimilation of synonymous codon usage bias in virus–host coevolution due to translational selection. Nature Ecology and Evolution, 2020, 4, 589-600.	7.8	79
9	In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs' cleavage by CRISPR/Cas13a system. Antiviral Research, 2020, 178, 104794.	4.1	27
10	The expression tractability of biological traits shaped by natural selection. Journal of Genetics and Genomics, 2019, 46, 397-404.	3.9	0
11	Risk stratification of cervical lesions using capture sequencing and machine learning method based on HPV and human integrated genomic profiles. Carcinogenesis, 2019, 40, 1220-1228.	2.8	19
12	Dosage sensitivity of X-linked genes in human embryonic single cells. BMC Genomics, 2019, 20, 42.	2.8	7
13	Deciphering the Genic Basis of Yeast Fitness Variation by Simultaneous Forward and Reverse Genetics. Molecular Biology and Evolution, 2017, 34, 2486-2502.	8.9	42
14	Intra and Interspecific Variations of Gene Expression Levels in Yeast Are Largely Neutral: (Nei Lecture,) Tj ETQqO C	0 0 rgBT /C	verlock 10 Th
15	Does mRNA structure contain genetic information for regulating co-translational protein folding?. Zoological Research, 2017, 38, 36-43.	2.1	8
16	Nascent RNA folding mitigates transcription-associated mutagenesis. Genome Research, 2016, 26, 50-59.	5.5	21

17	MtiBase: a database for decoding microRNA target sites located within CDS and 5â€ ² UTR regions from CLIP-Seq and expression profile datasets. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav102.	3.0	23
18	Determinants of the rate of protein sequence evolution. Nature Reviews Genetics, 2015, 16, 409-420.	16.3	294

2

JIAN-RONG YANG

#	Article	IF	CITATIONS
19	Human Long Noncoding RNAs Are Substantially Less Folded than Messenger RNAs. Molecular Biology and Evolution, 2015, 32, 970-977.	8.9	32
20	Codon-by-Codon Modulation of Translational Speed and Accuracy Via mRNA Folding. PLoS Biology, 2014, 12, e1001910.	5.6	101
21	Determinative Developmental Cell Lineages Are Robust to Cell Deaths. PLoS Genetics, 2014, 10, e1004501.	3.5	9
22	Identification of medium-sized genomic deletions with low coverage, mate-paired restricted tags. BMC Genomics, 2013, 14, 51.	2.8	1
23	Differential requirements for mRNA folding partially explain why highly expressed proteins evolve slowly. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E678-86.	7.1	110
24	Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency. PLoS Genetics, 2012, 8, e1002603.	3.5	263
25	MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Research, 2012, 40, 4615-4625.	14.5	195
26	Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proceedings of the United States of America, 2012, 109, E831-40.	7.1	160
27	Impact of translational errorâ€induced and errorâ€free misfolding on the rate of protein evolution. Molecular Systems Biology, 2010, 6, 421.	7.2	116
28	Pseudogenization of the Umami Taste Receptor Gene Tas1r1 in the Giant Panda Coincided with its Dietary Switch to Bamboo. Molecular Biology and Evolution, 2010, 27, 2669-2673.	8.9	186
29	MicroRNA-101, Down-regulated in Hepatocellular Carcinoma, Promotes Apoptosis and Suppresses Tumorigenicity. Cancer Research, 2009, 69, 1135-1142.	0.9	586
30	A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis, 2008, 29, 2126-2131.	2.8	326