Yassine Sassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131542/publications.pdf

Version: 2024-02-01

361413 289244 2,216 43 20 40 citations h-index g-index papers 43 43 43 3675 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Right predominant electrical remodeling in a pure model of pulmonary hypertension promotes reentrant arrhythmias. Heart Rhythm, 2022, 19, 113-124.	0.7	8
2	MicroRNA-365 regulates human cardiac action potential duration. Nature Communications, 2022, 13, 220.	12.8	15
3	The miRNA199a/SIRT1/P300/Yy1/sST2 signaling axis regulates adverse cardiac remodeling following MI. Scientific Reports, 2021, 11, 3915.	3.3	6
4	Regulation of the Methylation and Expression Levels of the BMPR2 Gene by SIN3a as a Novel Therapeutic Mechanism in Pulmonary Arterial Hypertension. Circulation, 2021, 144, 52-73.	1.6	38
5	Combination Therapy with STAT3 Inhibitor Enhances SERCA2a-Induced BMPR2 Expression and Inhibits Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2021, 22, 9105.	4.1	10
6	A novel secreted-cAMP pathway inhibits pulmonary hypertension via a feed-forward mechanism. Cardiovascular Research, 2020, 116, 1500-1513.	3.8	15
7	AAV1.SERCA2a Gene Therapy Reverses Pulmonary Fibrosis by Blocking the STAT3/FOXM1 Pathway and Promoting the SNON/SKI Axis. Molecular Therapy, 2020, 28, 394-410.	8.2	23
8	Specific Modified mRNA Translation System. Circulation, 2020, 142, 2485-2488.	1.6	18
9	Induction and Characterization of Pulmonary Hypertension in Mice using the Hypoxia/SU5416 Model. Journal of Visualized Experiments, 2020, , .	0.3	3
10	Pkm2 Regulates Cardiomyocyte Cell Cycle and Promotes Cardiac Regeneration. Circulation, 2020, 141, 1249-1265.	1.6	147
11	FTO-Dependent N ⁶ -Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation, 2019, 139, 518-532.	1.6	369
12	The Left Pneumonectomy Combined with Monocrotaline or Sugen as a Model of Pulmonary Hypertension in Rats. Journal of Visualized Experiments, 2019, , .	0.3	10
13	A Novel Large Animal Model of Thrombogenic Coronary Microembolization. Frontiers in Cardiovascular Medicine, 2019, 6, 157.	2.4	13
14	Intra-tracheal gene delivery of aerosolized SERCA2a to the lung suppresses ventricular arrhythmias in a model of pulmonary arterial hypertension. Journal of Molecular and Cellular Cardiology, 2019, 127, 20-30.	1.9	23
15	Abstract 239: Selective Right-sided Electrical Remodeling In A Pure Model Of Pulmonary Hypertension Promotes Micro-reentrant Arrhythmias. Circulation Research, 2019, 125, .	4.5	O
16	Pharmacological inhibition of the mitochondrial NADPH oxidase $4/PKC\hat{1}\pm/Gal-3$ pathway reduces left ventricular fibrosis following myocardial infarction. Translational Research, 2018, 199, 4-23.	5.0	20
17	Pulmonary Artery Hypertension Model in Rats by Monocrotaline Administration. Methods in Molecular Biology, 2018, 1816, 233-241.	0.9	23
18	The Sugen 5416/Hypoxia Mouse Model of Pulmonary Arterial Hypertension. Methods in Molecular Biology, 2018, 1816, 243-252.	0.9	17

#	Article	IF	Citations
19	Direct measurement of left atrial and pulmonary artery pressure in rats with pulmonary hypertension. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1161-1163.	0.8	4
20	Abstract 301: An m6A Demethylase, FTO Mediates Post-transcriptional mRNA Modifications to Regulate Cardiac and Cardiomyocyte Function. Circulation Research, 2018, 123, .	4.5	0
21	Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nature Communications, 2017, 8, 1614.	12.8	172
22	MRP4 (ABCC4) as a potential pharmacologic target for cardiovascular disease. Pharmacological Research, 2016, 107, 381-389.	7.1	45
23	Post-transcriptional modulation of interleukin 8 by CNOT6L regulates skeletal muscle differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 263-270.	4.1	8
24	Viral Vector-Based Targeting of miR-21 in Cardiac Nonmyocyte Cells Reduces Pathologic Remodeling of the Heart. Molecular Therapy, 2016, 24, 1939-1948.	8.2	51
25	MicroRNA Augmentation of Bone Marrow–Derived Cell Therapy â^—. Journal of the American College of Cardiology, 2015, 66, 2227-2229.	2.8	3
26	Cardiac myocyte–secreted cAMP exerts paracrine action via adenosine receptor activation. Journal of Clinical Investigation, 2014, 124, 5385-5397.	8.2	70
27	MiR-378 Controls Cardiac Hypertrophy by Combined Repression of Mitogen-Activated Protein Kinase Pathway Factors. Circulation, 2013, 127, 2097-2106.	1.6	203
28	Cyclic Nucleotide Compartmentalization: Contributions of Phosphodiesterases and ATP-Binding Cassette Transporters. Annual Review of Pharmacology and Toxicology, 2013, 53, 231-253.	9.4	71
29	microRNA-22 Promotes Heart Failure through Coordinate Suppression of PPAR/ERR-Nuclear Hormone Receptor Transcription. PLoS ONE, 2013, 8, e75882.	2.5	72
30	Pulmonary Hypertension: Novel Pathways and Emerging Therapies Inhibitors of cGMP and cAMP Metabolism. Handbook of Experimental Pharmacology, 2013, , 513-529.	1.8	3
31	Pulmonary Hypertension: Novel Pathways and Emerging Therapies Inhibitors of cGMP and cAMP Metabolism. Handbook of Experimental Pharmacology, 2013, 218, 513-529.	1.8	2
32	Regulation of cAMP homeostasis by the efflux protein MRP4 in cardiac myocytes. FASEB Journal, 2012, 26, 1009-1017.	0.5	61
33	A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 13-20.	1.9	104
34	SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2011, 50, 621-633.	1.9	55
35	Ryanodine receptor leak mediated by caspase-8 activation leads to left ventricular injury after myocardial ischemia-reperfusion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13258-13263.	7.1	98
36	Critical Role for Stromal Interaction Molecule 1 in Cardiac Hypertrophy. Circulation, 2011, 124, 796-805.	1.6	144

3

#	ARTICLE	IF	CITATIONS
37	Inhibition of MRP4 prevents and reverses pulmonary hypertension in mice. Journal of Clinical Investigation, 2011, 121, 2888-2897.	8.2	83
38	Multi-drug Resistance Protein 4 (MRP4/ABCC4) and cyclic nucleotides signaling pathways. Cell Cycle, 2009, 8, 959-964.	2.6	13
39	RNA Interference Targeting STIM1 Suppresses Vascular Smooth Muscle Cell Proliferation and Neointima Formation in the Rat. Molecular Therapy, 2009, 17, 455-462.	8.2	82
40	Basal Ca2+ Entry Controls NFAT Transcriptional Activity, Proliferation And Migration Of Human Vascular Smooth Muscle Cells. Biophysical Journal, 2009, 96, 165a.	0.5	0
41	Mrp4 Is A Transmembrane Export Pump Acting As An Endogenous Regulator Of Cyclic- Nucleotides Dependent Pathways. Biophysical Journal, 2009, 96, 273a.	0.5	1
42	Multi-drug resistance protein 4 (MRP4/ABCC4) and cyclic nucleotides signaling pathways. Cell Cycle, 2009, 8, 962-3.	2.6	8
43	Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. Journal of Clinical Investigation, 2008, 118, 2747-2757.	8.2	105