Wei Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131527/publications.pdf

Version: 2024-02-01

126	9,261	53	92
papers	citations	h-index	g-index
127	127	127	7982 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Molybdenum-induced tuning 3d-orbital electron filling degree of CoSe2 for alkaline hydrogen and oxygen evolution reactions. Chinese Chemical Letters, 2023, 34, 107364.	9.0	13
2	Enhanced catalytic activity of Ru through N modification toward alkaline hydrogen electrocatalysis. Chinese Chemical Letters, 2022, 33, 1065-1069.	9.0	31
3	High-Performance Ru ₂ P Anodic Catalyst for Alkaline Polymer Electrolyte Fuel Cells. CCS Chemistry, 2022, 4, 1732-1744.	7.8	39
4	Recent advances in alkaline hydrogen oxidation reaction. Journal of Energy Chemistry, 2022, 66, 107-122.	12.9	51
5	Nitridation-induced metal–organic framework nanosheet for enhanced water oxidation electrocatalysis. Journal of Energy Chemistry, 2022, 64, 531-537.	12.9	23
6	Highly efficient electrochemical carbon dioxide reduction to syngas with tunable ratios over pyridinic- nitrogen rich ultrathin carbon nanosheets. Journal of Colloid and Interface Science, 2022, 608, 2650-2659.	9.4	11
7	Boosting alkaline hydrogen evolution electrocatalysis through electronic communicating vessels on Co2P/Co4N heterostructure catalyst. Chemical Engineering Journal, 2022, 433, 133831.	12.7	28
8	Sequence control of metals in MOF by coordination number precoding for electrocatalytic oxygen evolution. Chem Catalysis, 2022, 2, 84-101.	6.1	20
9	Intermolecular Energy Gapâ€Induced Formation of Highâ€Valent Cobalt Species in CoOOH Surface Layer on Cobalt Sulfides for Efficient Water Oxidation. Angewandte Chemie, 2022, 134, .	2.0	39
10	Correlating Alkaline Hydrogen Electrocatalysis and Hydroxide Binding Energies on Mo-Modified Ru Catalysts. ACS Sustainable Chemistry and Engineering, 2022, 10, 1616-1623.	6.7	21
11	Intermolecular Energy Gapâ€Induced Formation of Highâ€Valent Cobalt Species in CoOOH Surface Layer on Cobalt Sulfides for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2022, 61,	13.8	97
12	Boosting Hydrogen Oxidation Performance of Phase-Engineered Ni Electrocatalyst under Alkaline Media. ACS Sustainable Chemistry and Engineering, 2022, 10, 3682-3689.	6.7	16
13	Identifying the Role of Hydroxyl Binding Energy in a Nonâ€Monotonous Behavior of Pdâ€Pd ₄ S for Hydrogen Oxidation Reaction. Advanced Functional Materials, 2022, 32, .	14.9	28
14	Manipulating the electronic structure of Ni electrocatalyst through d-p orbital hybridization induced by B-doping for efficient alkaline hydrogen oxidation reaction. Chinese Journal of Catalysis, 2022, 43, 1527-1534.	14.0	10
15	Oxygen-Inserted Top-Surface Layers of Ni for Boosting Alkaline Hydrogen Oxidation Electrocatalysis. Journal of the American Chemical Society, 2022, 144, 12661-12672.	13.7	75
16	Electronic Modulation of Ru Nanosheet by d–d Orbital Coupling for Enhanced Hydrogen Oxidation Reaction in Alkaline Electrolytes. Small, 2022, 18, .	10.0	18
17	A cobalt hydroxide coated metal-organic framework for enhanced water oxidation electrocatalysis. Chemical Engineering Journal, 2021, 408, 127319.	12.7	36
18	Dual-phase engineering of MoN/Co4N with tailored electronic structure for enhanced hydrogen evolution. Chemical Engineering Journal, 2021, 421, 127757.	12.7	27

#	Article	IF	CITATIONS
19	Tailoring the 3d-orbital electron filling degree of metal center to boost alkaline hydrogen evolution electrocatalysis. Applied Catalysis B: Environmental, 2021, 284, 119718.	20.2	63
20	Constructing the CoO/Co ₄ N heterostructure with an optimized electronic structure to boost alkaline hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 18208-18212.	10.3	35
21	Hexagonal RuSe ₂ Nanosheets for Highly Efficient Hydrogen Evolution Electrocatalysis. Angewandte Chemie, 2021, 133, 7089-7093.	2.0	20
22	Hexagonal RuSe ₂ Nanosheets for Highly Efficient Hydrogen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 7013-7017.	13.8	88
23	Dischargeâ€Induced Enhancement of the Oxygen Evolution Reaction. Angewandte Chemie, 2021, 133, 20195-20201.	2.0	3
24	Dischargeâ€Induced Enhancement of the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 20042-20048.	13.8	20
25	Modification of the Intermediate Binding Energies on Ni/Ni ₃ N Heterostructure for Enhanced Alkaline Hydrogen Oxidation Reaction. Advanced Functional Materials, 2021, 31, 2106156.	14.9	84
26	Phosphorus doped nickel selenide for full device water splitting. Journal of Colloid and Interface Science, 2021, 602, 115-122.	9.4	17
27	Self-supported nickel sulfide derived from nickel foam for hydrogen evolution and oxygen evolution reaction: effect of crystal phase switching. Nanotechnology, 2021, 32, 085710.	2.6	11
28	Inter-regulated d-band centers of the Ni ₃ B/Ni heterostructure for boosting hydrogen electrooxidation in alkaline media. Chemical Science, 2020, 11, 12118-12123.	7.4	74
29	Trends in Alkaline Hydrogen Evolution Activity on Cobalt Phosphide Electrocatalysts Doped with Transition Metals. Cell Reports Physical Science, 2020, 1, 100136.	5.6	46
30	Mg storage properties of hollow copper selenide nanocubes. Dalton Transactions, 2020, 49, 13253-13261.	3.3	11
31	Origin of the enhanced oxygen evolution reaction activity and stability of a nitrogen and cerium co-doped CoS2 electrocatalyst. Journal of Materials Chemistry A, 2020, 8, 22694-22702.	10.3	23
32	Phosphorus-Induced Activation of Ruthenium for Boosting Hydrogen Oxidation and Evolution Electrocatalysis. ACS Catalysis, 2020, 10, 11751-11757.	11.2	124
33	Ultrafine phosphorus-doped rhodium for enhanced hydrogen electrocatalysis in alkaline electrolytes. Journal of Materials Chemistry A, 2020, 8, 11923-11927.	10.3	34
34	Reticulation of 2D Semiconductors by Metal–Organic Approach for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 8102-8110.	6.7	7
35	IrMo Nanocatalysts for Efficient Alkaline Hydrogen Electrocatalysis. ACS Catalysis, 2020, 10, 7322-7327.	11.2	87
36	Discrepant roles of adsorbed OH* species on IrWO for boosting alkaline hydrogen electrocatalysis. Science Bulletin, 2020, 65, 1735-1742.	9.0	37

#	Article	IF	CITATIONS
37	Nickel-iron borate coated nickel-iron boride hybrid for highly stable and active oxygen evolution electrocatalysis. Chinese Chemical Letters, 2020, 31, 2469-2472.	9.0	30
38	Oxygen-Vacancy-Induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolution reactions. Applied Catalysis B: Environmental, 2020, 277, 119282.	20.2	166
39	Ni0.85Se hexagonal nanosheets as an advanced conversion cathode for Mg secondary batteries. Journal of Energy Chemistry, 2020, 48, 226-232.	12.9	33
40	Cu2MoS4 hollow nanocages with fast and stable Mg2+-storage performance. Chemical Engineering Journal, 2020, 387, 124125.	12.7	30
41	NiCo ₂ Se ₄ Hierarchical Microflowers of Nanosheets and Nanorods as Pseudocapacitive Mg-Storage Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 2964-2972.	6.7	21
42	Boosting Hydrogen Oxidation Activity of Ni in Alkaline Media through Oxygenâ€Vacancyâ€Rich CeO ₂ /Ni Heterostructures. Angewandte Chemie - International Edition, 2019, 58, 14179-14183.	13.8	223
43	Boosting Hydrogen Oxidation Activity of Ni in Alkaline Media through Oxygenâ€Vacancyâ€Rich CeO ₂ /Ni Heterostructures. Angewandte Chemie, 2019, 131, 14317-14321.	2.0	38
44	Synergistically Tuning Water and Hydrogen Binding Abilities Over Co ₄ N by Cr Doping for Exceptional Alkaline Hydrogen Evolution Electrocatalysis. Advanced Energy Materials, 2019, 9, 1902449.	19.5	205
45	CoPâ€Doped MOFâ€Based Electrocatalyst for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 4679-4684.	13.8	480
46	Nitrogen Engineering on 3D Dandelionâ€Flowerâ€Like CoS ₂ for Highâ€Performance Overall Water Splitting. Small, 2019, 15, e1901993.	10.0	124
47	Decorating WSe ₂ nanosheets with ultrafine Ru nanoparticles for boosting electrocatalytic hydrogen evolution in alkaline electrolytes. Inorganic Chemistry Frontiers, 2019, 6, 1382-1387.	6.0	24
48	Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH-universal hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 253, 21-27.	20.2	172
49	Tailoring the Electronic Structure of Co ₂ P by N Doping for Boosting Hydrogen Evolution Reaction at All pH Values. ACS Catalysis, 2019, 9, 3744-3752.	11.2	357
50	Selfâ€Sacrificial Templateâ€Directed Vaporâ€Phase Growth of MOF Assemblies and Surface Vulcanization for Efficient Water Splitting. Advanced Materials, 2019, 31, e1806672.	21.0	248
51	IrW nanobranches as an advanced electrocatalyst for pH-universal overall water splitting. Nanoscale, 2019, 11, 8898-8905.	5.6	59
52	Enhanced HOR catalytic activity of PGM-free catalysts in alkaline media: the electronic effect induced by different heteroatom doped carbon supports. Journal of Materials Chemistry A, 2019, 7, 10936-10941.	10.3	84
53	In Situ Synthesis of NiCoP Nanoparticles Supported on Reduced Graphene Oxide for the Catalytic Hydrolysis of Ammonia Borane. ChemPlusChem, 2019, 84, 382-386.	2.8	17
54	CoPâ€Doped MOFâ€Based Electrocatalyst for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 4727-4732.	2.0	102

#	Article	IF	CITATIONS
55	Rhodium Phosphide: A New Type of Hydrogen Oxidation Reaction Catalyst with Nonâ€Linear Correlated Catalytic Response to pH. ChemElectroChem, 2019, 6, 1990-1995.	3.4	19
56	An Amorphous Cobalt Borate Nanosheet-Coated Cobalt Boride Hybrid for Highly Efficient Alkaline Water Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 5620-5625.	6.7	51
57	NiPt nanoparticles supported on CeO2 nanospheres for efficient catalytic hydrogen generation from alkaline solution of hydrazine. Chinese Chemical Letters, 2019, 30, 634-637.	9.0	41
58	Iridium (⁷⁷ Ir). World Scientific Series in Nanoscience and Nanotechnology, 2019, , 727-739.	0.1	0
59	Ultrasmall Ir nanoparticles for efficient acidic electrochemical water splitting. Inorganic Chemistry Frontiers, 2018, 5, 1121-1125.	6.0	49
60	Ultrathin Ir nanowires as high-performance electrocatalysts for efficient water splitting in acidic media. Nanoscale, 2018, 10, 1892-1897.	5.6	122
61	Monodisperse Palladium Sulfide as Efficient Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 753-761.	8.0	68
62	Reduced Graphene Oxideâ€Wrapped Co _{9â€"} <i></i> Fe <i>_x</i> S ₈ /Co,Feâ€N Composite as Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Small, 2018, 14, 1703748.	10.0	117
63	A Monodisperse Rh ₂ Pâ€Based Electrocatalyst for Highly Efficient and pHâ€Universal Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703489.	19.5	180
64	CoBP nanoparticles supported on three-dimensional nitrogen-doped graphene hydrogel and their superior catalysis for hydrogen generation from hydrolysis of ammonia borane. Journal of Alloys and Compounds, 2018, 735, 1271-1276.	5.5	41
65	Ultrafine Rh nanoparticle decorated MoSe ₂ nanoflowers for efficient alkaline hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 2978-2984.	6.0	18
66	Three-dimensional nitrogen-doped graphene hydrogel supported Co-CeOx nanoclusters as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. Chinese Chemical Letters, 2018, 29, 1671-1674.	9.0	41
67	Construction of a hierarchical NiFe layered double hydroxide with a 3D mesoporous structure as an advanced electrocatalyst for water oxidation. Inorganic Chemistry Frontiers, 2018, 5, 1795-1799.	6.0	15
68	Moâ€Doped Ni ₃ S ₂ Nanowires as Highâ€Performance Electrocatalysts for Overall Water Splitting. ChemElectroChem, 2018, 5, 2564-2570.	3.4	38
69	Well-aligned metal–organic framework array-derived CoS ₂ nanosheets toward robust electrochemical water splitting. Materials Chemistry Frontiers, 2018, 2, 1732-1738.	5.9	41
70	IrCo Nanodendrite as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting under Acidic Conditions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24993-24998.	8.0	76
71	Carbon Encapsulated Hollow Co ₃ O ₄ Composites Derived from Reduced Graphene Oxide Wrapped Metal–Organic Frameworks with Enhanced Lithium Storage and Water Oxidation Properties. Inorganic Chemistry, 2018, 57, 10649-10655.	4.0	33
72	Colloidal Synthesis of NiWSe Nanosheets for Efficient Electrocatalytic Hydrogen Evolution Reaction in Alkaline Media. Chemistry - an Asian Journal, 2018, 13, 2040-2045.	3.3	17

#	Article	IF	CITATIONS
73	3D mesoporous rose-like nickel-iron selenide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Nano Research, 2018, 11, 2149-2158.	10.4	57
74	Fe3C Nanorods Encapsulated in N-Doped Carbon Nanotubes as Active Electrocatalysts for Hydrogen Evolution Reaction. Electrocatalysis, 2018, 9, 264-270.	3.0	24
75	Ultrathin Nitrogen-Doped Carbon Coated with CoP for Efficient Hydrogen Evolution. ACS Catalysis, 2017, 7, 3824-3831.	11.2	404
76	Colloidal synthesis of urchin-like Fe doped NiSe ₂ for efficient oxygen evolution. Nanoscale, 2017, 9, 6821-6825.	5.6	127
77	Nitrogen-doped graphene hydrogel-supported NiPt-CeO x nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature. Nano Research, 2017, 10, 2856-2865.	10.4	43
78	Amorphous NiP supported on rGO for superior hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2017, 42, 14181-14187.	7.1	94
79	Hierarchical NiFeP microflowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2017, 5, 11229-11235.	10.3	148
80	Nest-like NiCoP for Highly Efficient Overall Water Splitting. ACS Catalysis, 2017, 7, 4131-4137.	11.2	480
81	A reduced graphene oxide/covalent cobalt porphyrin framework for efficient oxygen reduction reaction. Dalton Transactions, 2017, 46, 9344-9348.	3.3	53
82	Colloidal synthesis of iridium-iron nanoparticles for electrocatalytic oxygen evolution. Sustainable Energy and Fuels, 2017, 1, 1199-1203.	4.9	19
83	CeOx-modified NiFe nanodendrits grown on rGO for efficient catalytic hydrogen generation from alkaline solution of hydrazine. International Journal of Hydrogen Energy, 2017, 42, 27165-27173.	7.1	35
84	Ir-oriented nanocrystalline assemblies with high activity for hydrogen oxidation/evolution reactions in an alkaline electrolyte. Journal of Materials Chemistry A, 2017, 5, 22959-22963.	10.3	31
85	Cuboid Ni ₂ P as a Bifunctional Catalyst for Efficient Hydrogen Generation from Hydrolysis of Ammonia Borane and Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2017, 12, 2967-2972.	3.3	21
86	NiSe ₂ /FeSe ₂ nanodendrites: a highly efficient electrocatalyst for oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 4604-4608.	4.1	53
87	Colloidal synthesis of monodisperse trimetallic IrNiFe nanoparticles as highly active bifunctional electrocatalysts for acidic overall water splitting. Journal of Materials Chemistry A, 2017, 5, 24836-24841.	10.3	85
88	Ternary nickel–iron sulfide microflowers as a robust electrocatalyst for bifunctional water splitting. Journal of Materials Chemistry A, 2017, 5, 15838-15844.	10.3	179
89	Reactionâ€Kineticsâ€Tuned Synthesis of Platinum Nanorods and Nanodendrites with Enhanced Electrocatalytic Performance for Oxygen Reduction. ChemElectroChem, 2016, 3, 2281-2287.	3.4	7
90	Facile Synthesis of a N-Doped Fe ₃ C@CNT/Porous Carbon Hybrid for an Advanced Oxygen Reduction and Water Oxidation Electrocatalyst. Journal of Physical Chemistry C, 2016, 120, 11006-11013.	3.1	54

#	Article	IF	Citations
91	A cobalt-based hybrid electrocatalyst derived from a carbon nanotube inserted metal–organic framework for efficient water-splitting. Journal of Materials Chemistry A, 2016, 4, 16057-16063.	10.3	156
92	A RhNiP/rGO hybrid for efficient catalytic hydrogen generation from an alkaline solution of hydrazine. Journal of Materials Chemistry A, 2016, 4, 14572-14576.	10.3	36
93	An Fe–N–C hybrid electrocatalyst derived from a bimetal–organic framework for efficient oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 11357-11364.	10.3	142
94	Metal–organic framework-derived hybrid of Fe ₃ C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highly efficient oxygen reduction and water oxidation. Catalysis Science and Technology, 2016, 6, 6365-6371.	4.1	63
95	Ternary CoAgPd Nanoparticles Confined Inside the Pores of MIL-101 as Efficient Catalyst for Dehydrogenation of Formic Acid. Catalysis Letters, 2016, 146, 518-524.	2.6	24
96	Monodisperse CoAgPd nanoparticles assembled on graphene for efficient hydrogen generation from formic acid at room temperature. International Journal of Hydrogen Energy, 2016, 41, 439-446.	7.1	53
97	NiPt–MnO _x supported on N-doped porous carbon derived from metal–organic frameworks for highly efficient hydrogen generation from hydrazine. Journal of Materials Chemistry A, 2016, 4, 5616-5622.	10.3	47
98	Graphene-Supported Nickel–Platinum Nanoparticles as Efficient Catalyst for Hydrogen Generation from Hydrous Hydrazine at Room Temperature. ACS Applied Materials & 1031-1034.	8.0	91
99	Ni–Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature. Dalton Transactions, 2015, 44, 6212-6218.	3.3	36
100	Ruthenium deposited on MCM-41 as efficient catalyst for hydrolytic dehydrogenation of ammonia borane and methylamine borane. Chinese Chemical Letters, 2015, 26, 1345-1350.	9.0	42
101	Nanoscale MIL-101 supported RhNi nanoparticles: an efficient catalyst for hydrogen generation from hydrous hydrazine. Journal of Materials Chemistry A, 2015, 3, 12468-12475.	10.3	59
102	NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Research, 2015, 8, 3472-3479.	10.4	40
103	Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage. International Journal of Hydrogen Energy, 2015, 40, 1062-1070.	7.1	121
104	Grapheneâ€Supported Trimetallic Coreâ€"Shell Cu@CoNi Nanoparticles for Catalytic Hydrolysis of Amine Borane. ChemPlusChem, 2014, 79, 325-332.	2.8	59
105	Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes. New Journal of Chemistry, 2014, 38, 4032.	2.8	57
106	Decoration of graphene with tetrametallic Cu@FeCoNi core–shell nanoparticles for catalytic hydrolysis of amine boranes. RSC Advances, 2014, 4, 32817.	3.6	32
107	Highly efficient dehydrogenation of hydrazine over graphene supported flower-like Ni–Pt nanoclusters at room temperature. Journal of Materials Chemistry A, 2014, 2, 14344.	10.3	52
108	Bimetallic Nickel–Rhodium Nanoparticles Supported on ZIFâ€8 as Highly Efficient Catalysts for Hydrogen Generation from Hydrazine in Alkaline Solution. ChemCatChem, 2014, 6, 2549-2552.	3.7	61

#	Article	IF	CITATIONS
109	Immobilization of Ultrafine Bimetallic Ni–Pt Nanoparticles Inside the Pores of Metal–Organic Frameworks as Efficient Catalysts for Dehydrogenation of Alkaline Solution of Hydrazine. Inorganic Chemistry, 2014, 53, 10122-10128.	4.0	71
110	AgPd nanoparticles supported on MIL-101 as high performance catalysts for catalytic dehydrogenation of formic acid. Journal of Materials Chemistry A, 2014, 2, 11060.	10.3	108
111	Ruthenium supported on MIL-96: An efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. International Journal of Hydrogen Energy, 2014, 39, 17129-17135.	7.1	59
112	In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane. International Journal of Hydrogen Energy, 2014, 39, 3371-3380.	7.1	151
113	Ni–Pt nanoparticles supported on MIL-101 as highly efficient catalysts for hydrogen generation from aqueous alkaline solution of hydrazine for chemical hydrogen storage. International Journal of Hydrogen Energy, 2014, 39, 9726-9734.	7.1	81
114	Graphene supported cobalt(0) nanoparticles for hydrolysis of ammonia borane. Materials Letters, 2014, 115, 113-116.	2.6	80
115	One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2013, 38, 11964-11972.	7.1	131
116	In Situ Synthesis of Ni(0) Catalysts Derived from Nickel Halides for Hydrolytic Dehydrogenation of Ammonia Borane. Catalysis Letters, 2013, 143, 873-880.	2.6	9
117	Graphene-Supported Ag-Based Core–Shell Nanoparticles for Hydrogen Generation in Hydrolysis of Ammonia Borane and Methylamine Borane. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8231-8240.	8.0	174
118	In situ synthesis of graphene supported Ag@CoNi core–shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane. Journal of Materials Chemistry A, 2013, 1, 10016.	10.3	118
119	One-step synthesis of magnetically recyclable rGO supported Cu@Co core–shell nanoparticles: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane. New Journal of Chemistry, 2013, 37, 3035.	2.8	97
120	3-Methyl-1,2-BN-cyclopentane: a promising H ₂ storage material?. Dalton Transactions, 2013, 42, 611-614.	3.3	26
121	A Single-Component Liquid-Phase Hydrogen Storage Material. Journal of the American Chemical Society, 2011, 133, 19326-19329.	13.7	203
122	1,2-BN Cyclohexane: Synthesis, Structure, Dynamics, and Reactivity. Journal of the American Chemical Society, 2011, 133, 13006-13009.	13.7	95
123	Bent and linear trinuclear nickel complexes with ligands derived from N -acylsalicylhydrazide ligands: structural characterization and bioactivity. Journal of Coordination Chemistry, 2009, 62, 1492-1501.	2.2	6
124	A novel 18-membered metallacrown containing a double-azathiacrown. Transition Metal Chemistry, 2008, 33, 295-299.	1.4	8
125	Synthesis, spectra and X-ray crystal structure of a new type of macrocyclic hexanuclear iron(III) cluster. Journal of Coordination Chemistry, 2007, 60, 1037-1045.	2.2	6
126	Chiral Resolution of Basic Pharmaceutical Enantiomers by Capillary Zone Electrophoresis. Analytical Letters, 2003, 36, 91-106.	1.8	3