M S Ramachandra Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131073/publications.pdf

Version: 2024-02-01

203 papers

4,305 citations

32 h-index 56 g-index

207 all docs

207 docs citations

207 times ranked

5818 citing authors

#	Article	IF	CITATIONS
1	The 2016 oxide electronic materials and oxide interfaces roadmap. Journal Physics D: Applied Physics, 2016, 49, 433001.	2.8	266
2	Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects. Applied Physics Letters, 2013, 103, .	3.3	235
3	Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano. Journal Physics D: Applied Physics, 2007, 40, 6312-6327.	2.8	147
4	Epitaxial <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Zn</mml:mtext></mml:mrow><mml:mi>x<films: .<="" 2009,="" 79,="" a="" and="" b,="" electrical="" magnetic="" material="" physical="" properties.="" review="" spintronic="" td="" tunable="" with=""><td>/mml:mi> < 3.2</td><td>/mml:msub:</td></films:></mml:mi></mml:msub></mml:mrow></mml:math>	/mml:mi> < 3.2	/mml:msub:
5	ZnO@MnO ₂ Core–Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors. ACS Applied Materials & Supercapacitors. ACS Applied Mater	8.0	130
6	Optical and electrical resistivity studies of isovalent and aliovalent <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>d</mml:mi></mml:mrow></mml:math> transition metal ion doped ZnO. Physical Review B, 2009, 80, .	3.2	128
7	Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs. Materials Research Bulletin, 2008, 43, 1657-1663.	5.2	125
8	Charge transfer and electronic transitions in polycrystalline <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	>3 ² /mml:ı	122 nn>
9	Low temperature magnetocaloric effect in polycrystalline BiFeO3 ceramics. Applied Physics Letters, 2009, 95, .	3.3	86
10	Influence of d-d transition bands on electrical resistivity in Ni doped polycrystalline ZnO. Applied Physics Letters, 2006, 88, 222111.	3.3	77
11	Magnetic and optical properties of Mn-doped BaSnO3. Solid State Communications, 2009, 149, 884-887.	1.9	76
12	Weak ferromagnetic ordering in Ca doped polycrystalline BiFeO3. Journal of Applied Physics, 2012, 111, .	2.5	67
13	A-site-disorder-dependent percolative transport and Griffiths phase in doped manganites. Physical Review B, 2004, 70, .	3.2	65
14	Tcsuppression and conduction mechanisms inBi2.1Sr1.93Ca0.97â^xRxCu2O8+y(R=Pr, Gd, and Er) systems. Physical Review B, 1994, 50, 6929-6938.	3.2	64
15	In Situ/ex Situ Investigations on the Formation of the Mosaic Solid Electrolyte Interface Layer on Graphite Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 28717-28726.	3.1	62
16	Study of magnetic properties of A2B′NbO6 (A=Ba,Sr,BaSr; and B′=Fe and Mn) double perovskites. Journal of Applied Physics, 2004, 95, 7528-7530.	2.5	55
17	HoCrO ₃ and YCrO ₃ : a comparative study. Journal of Physics Condensed Matter, 2013, 25, 216004.	1.8	55
18	Effect of La substitution on the structural and dielectric properties of BaZr0.1Ti0.9O3 ceramics. Journal of Alloys and Compounds, 2009, 481, 692-696.	5.5	51

#	Article	IF	CITATIONS
19	Anomalous Hall effect in magnetite: Universal scaling relation between Hall and longitudinal conductivity in low-conductivity ferromagnets. Physical Review B, 2008, 78, .	3.2	50
20	Effect of microstrain on the magnetic properties of BiFeO3 nanoparticles. Applied Physics Letters, 2014, 105, .	3.3	45
21	Structural, morphological and hydrogen sensing studies on pulsed laser deposited nanostructured palladium thin films. Journal Physics D: Applied Physics, 2006, 39, 2791-2795.	2.8	43
22	Oxygenated graphene quantum dots (GQDs) synthesized using laser ablation for long-term real-time tracking and imaging. RSC Advances, 2017, 7, 53822-53829.	3.6	43
23	Magnetotransport studies and mechanism ofHo- andY-dopedLa0.7Ca0.3MnO3. Physical Review B, 2001, 63, .	3.2	42
24	Search for ferromagnetism in undoped and cobalt-doped HfO2â^Î. Applied Physics Letters, 2006, 88, 142505.	3.3	41
25	Oxygen vacancy controlled tunable magnetic and electrical transport properties of (Li, Ni)-codoped ZnO thin films. Applied Physics Letters, 2010, 96, .	3.3	41
26	Influence of A-site Gd doping on the microstructure and dielectric properties of Ba(Zr0.1Ti0.9)O3 ceramics. Journal of Alloys and Compounds, 2011, 509, 1266-1270.	5 . 5	41
27	Polarization controlled photovoltaic and self-powered photodetector characteristics in Pb-free ferroelectric thin film. APL Materials, 2019, 7, .	5.1	40
28	Synthesis and study of electrical and magnetic properties of vanadium oxide micro and nanosized rods grown using pulsed laser deposition technique. Solid State Communications, 2010, 150, 1041-1044.	1.9	39
29	Effect of boron doping on first-order Raman scattering in superconducting boron doped diamond films. Applied Physics Letters, 2017, 110 , .	3.3	35
30	Chemical pressure effect on optical properties in multiferroic bulk BiFeO3. Journal of Applied Physics, 2012, 112, .	2.5	34
31	25 years of pulsed laser deposition. Journal Physics D: Applied Physics, 2014, 47, 030301.	2.8	34
32	Dielectric and optical phonon anomalies near antiferromagnetic ordering in LaCrO3: A possible near room temperature magnetodielectric system. Applied Physics Letters, 2013, 103, .	3.3	33
33	Engineered CVD Diamond Coatings for Machining and Tribological Applications. Jom, 2015, 67, 1565-1577.	1.9	33
34	Correlation between electrical transport, optical, and magnetic properties of transition metal ion doped ZnO. Journal of Applied Physics, 2008, 103, .	2.5	32
35	Magnetostructural and magnetocaloric properties of bulk LaCrO ₃ system. Materials Research Express, 2015, 2, 026103.	1.6	32
36	Zn-vacancy induced violet emission in p-type phosphorus and nitrogen codoped ZnO thin films grown by pulsed laser deposition. Applied Surface Science, 2015, 347, 96-100.	6.1	32

3

#	Article	IF	Citations
37	Fast, reversible CO2 capture in nanostructured Brownmillerite CaFeO2.5. Nano Energy, 2015, 11, 146-153.	16.0	32
38	Luminescent properties of near UV excitable Ba2ZnS3 : Mn red emitting phosphor blend for white LED and display applications. Journal Physics D: Applied Physics, 2006, 39, 2701-2706.	2.8	31
39	Electrocaloric effect in (1Ââ^'Âx)PIN-xPT relaxor ferroelectrics. Journal of Alloys and Compounds, 2016, 663, 444-448.	5.5	31
40	Rapid wafer-scale fabrication with layer-by-layer thickness control of atomically thin MoS2 films using gas-phase chemical vapor deposition. APL Materials, 2019, 7, .	5.1	31
41	Dielectric relaxation and magneto-dielectric effect in polycrystalline Bi0.9Ca0.1FeO2.95. Applied Physics Letters, 2012, 100, .	3.3	30
42	Chemical vapor deposition of diamond coatings on tungsten carbide (WC–Co) riveting inserts. International Journal of Refractory Metals and Hard Materials, 2013, 37, 117-120.	3.8	30
43	Fabrication of nanowires of Al-doped ZnO using nanoparticle assisted pulsed laser deposition (NAPLD) for device applications. Journal of Alloys and Compounds, 2014, 584, 611-616.	5 . 5	29
44	Photoactive Brownmillerite Multiferroic KBiFe ₂ O ₅ and Its Potential Application in Sunlight-Driven Photocatalysis. ACS Omega, 2018, 3, 16643-16650.	3 . 5	29
45	g-C3N4/Ca2Fe2O5 heterostructures for enhanced photocatalytic degradation of organic effluents under sunlight. Scientific Reports, 2021, 11, 19639.	3.3	29
46	Mechanical milling assisted synthesis of Ba–Mn co-substituted BiFeO3ceramics and their properties. Journal Physics D: Applied Physics, 2012, 45, 415302.	2.8	28
47	An aqueous method for the controlled manganese (Mn ²⁺) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI. Physical Chemistry Chemical Physics, 2015, 17, 4609-4619.	2.8	27
48	A Codoping Route to Realize Low Resistive and Stable p-Type Conduction in (Li, Ni):ZnO Thin Films Grown by Pulsed Laser Deposition. ACS Applied Materials & Interfaces, 2011, 3, 1974-1979.	8.0	26
49	Dielectric relaxation near 25 K in multiferroic BiFeO3 ceramics. Journal of Applied Physics, 2011, 110, .	2.5	26
50	Fabrication of high responsivity deep UV photo-detector based on Na doped ZnO nanocolumns. Journal Physics D: Applied Physics, 2018, 51, 185106.	2.8	25
51	Microstructure and phase composition dependent tribological properties of TiC/a-C nanocomposite thin films. Surface and Coatings Technology, 2014, 258, 557-565.	4.8	24
52	Investigation on tribological behaviour of boron doped diamond coated cemented tungsten carbide for cutting tool applications. Surface and Coatings Technology, 2017, 332, 332-340.	4.8	24
53	Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles. Journal of Nanoparticle Research, 2014, 16 , 1 .	1.9	23
54	Integration of perovskite PZT thin films on diamond substrate without buffer layer. Journal Physics D: Applied Physics, 2012, 45, 202001.	2.8	22

#	Article	IF	CITATIONS
55	Studies on corrosion and wear behavior of submicrometric diamond coated Ti alloys. Tribology International, 2013, 63, 132-140.	5.9	22
56	Thermal transport across wrinkles in few-layer graphene stacks. Nanoscale Advances, 2021, 3, 1708-1716.	4.6	22
57	Improved Luminescence of Zn[sub 2]SiO[sub 4]:Mn Green Phosphor Prepared by Gel Combustion Synthesis of ZnO:Mn–SiO[sub 2]. Journal of the Electrochemical Society, 2007, 154, H297.	2.9	21
58	Nanocrystalline diamond coatings on the interior of WC–Co dies for drawing carbon steel tubes: Enhancement of tube properties. Diamond and Related Materials, 2014, 50, 33-37.	3.9	21
59	Band gap reduction and redshift of lattice vibrational spectra in Nb and Fe co-doped PLZT. Journal of Materials Science, 2017, 52, 13012-13022.	3.7	21
60	Tunable and enhanced Rashba spin-orbit coupling in iridate-manganite heterostructures. Physical Review B, 2020, 102, .	3.2	21
61	Direct Growth of Wafer-Scale, Transparent, p-Type Reduced-Graphene-Oxide-like Thin Films by Pulsed Laser Deposition. ACS Nano, 2020, 14, 3290-3298.	14.6	20
62	Growth of sillenite Bi12FeO20 single crystals: structural, thermal, optical, photocatalytic features and first principle calculations. Scientific Reports, 2020, 10, 22052.	3.3	20
63	Structural and dielectric characterization of Sr substituted Ba(Zr,Ti)O3 based functional materials. Applied Physics A: Materials Science and Processing, 2007, 89, 1011-1015.	2.3	19
64	EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition. Journal of Physics Condensed Matter, 2013, 25, 385402.	1.8	19
65	Effect of Ag Addition on Microstructure and Raman Vibrational Modes of Bulk FeSe. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3117-3122.	1.8	19
66	Enhancement in electrical and magnetodielectric properties of Ca―and Baâ€doped BiFeO ₃ polycrystalline ceramics. Journal of the American Ceramic Society, 2018, 101, 782-788.	3.8	19
67	Zinc Interstitial Rich ZnO Honeycomb Nanostructures for Deep UV Photodetection. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800241.	2.4	19
68	Role of double exchange interaction on the magnetic and electrical properties of Pr0.8Sr0.2MnO3 ferromagnetic insulating manganite. Journal of Applied Physics, 2006, 99, 08Q315.	2.5	18
69	Wide-range tunable bandgap in Bi _{1â^'<i>x</i>} Ca _{<i>x</i>} Fe _{1â^'<i>y</i>} Ti _{<i>y</i>} O _{3â^' via oxygen vacancy induced structural modulations at room temperature. Materials Research Express, 2015. 2. 095012.}	<i>;Î</i> <td>/sub>nanopai</td>	/sub>nanopai
70	Extremely high wear resistance and ultra-low friction behaviour of oxygen-plasma-treated nanocrystalline diamond films. Journal Physics D: Applied Physics, 2013, 46, 425304.	2.8	17
71	Realization of highest specific absorption rate near superparamagnetic limit of CoFe ₂ O ₄ colloids for magnetic hyperthermia applications. Materials Research Express, 2014, 1, 026107.	1.6	17
72	Realization of device quality PMN–PT ceramics using modulated heating method. Ceramics International, 2015, 41, 11984-11991.	4.8	17

#	Article	IF	CITATIONS
73	High-pressure behavior of superconducting boron-doped diamond. Physical Review B, 2017, 95, .	3.2	17
74	Ho^3+-doped ZnO nano phosphor for low-threshold sharp red light emission at elevated temperatures. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2485.	2.1	17
75	Phonon thermal transport and phonon–magnon coupling in polycrystalline BiFeO ₃ systems. Journal Physics D: Applied Physics, 2015, 48, 115301.	2.8	16
76	Enhanced photoluminescence and heterojunction characteristics of pulsed laser deposited ZnO nanostructures. Applied Surface Science, 2017, 418, 335-339.	6.1	16
77	Influence of Microstructure on the Nanomechanical Properties of Polymorphic Phases of Poly(vinylidene fluoride). Journal of Physical Chemistry B, 2018, 122, 8591-8600.	2.6	16
78	Cool white light emission on Ca3â^'(l+n)MgSi2O8: $\frac{Ce}_{mathrm{l}}^{3+}$, $\frac{Ce}_{mathrm{l}}^{2+}$ phosphors and analysis of energy transfer mechanism. Applied Physics A: Materials Science and Processing, 2010, 99, 947-953.	2.3	15
79	Enhancement of dielectric and ferroelectric properties in cobalt ferrite doped poly(vinylidene) Tj ETQq1 1 0.78431	4 rgBT /Ov	verlock 10
80	Tuning the magnetization dynamics of silica-coated Fe3O4 core-shell nanoparticles by shell thickness control. Journal of Applied Physics, 2008, 103, .	2.5	14
81	Dielectric resonance and magnetic properties of Fe-3% doped BaSnO3 thin films grown by pulsed laser deposition. Journal of Applied Physics, 2012, 111, 074107.	2.5	14
82	Enhanced functional response of high temperature stabilized (1-x)PMN-xPT ceramics. Ceramics International, 2017, 43, 9408-9415.	4.8	14
83	Evolution of morphology, ferroelectric, and mechanical properties in poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /C 2018, 135, 45955.	Overlock 10 2.6	
84	Impedance characteristics and PTCR effect in lead free BaTi $1-x$ Sn x O 3 piezoceramics. Materials Research Bulletin, 2018, 106, 371-378.	5.2	14
85	Magnetotransport studies in La0.7Ca0.3Mn1â^'xMxO3 (M=Co and Ga). Journal of Alloys and Compounds, 2001, 326, 98-100.	5. 5	13
86	UV excitable Y2â^'xâ^'y Gd y SiO5:Ce x phosphors for cool white light emission. Applied Physics A: Materials Science and Processing, 2009, 94, 607-612.	2.3	13
87	Near Infrared Random Lasing in Multilayer MoS ₂ . ACS Omega, 2018, 3, 14097-14102.	3.5	13
88	Magnetic and dielectric properties study of cobalt ferrite nanoparticles synthesized by co-precipitation method. Materials Research Society Symposia Proceedings, 2011, 1368, 1.	0.1	12
89	Direct and Facile Room-Temperature Synthesis of Nanocrystalline Calcium Sulfate Dihydrate (Gypsum). Crystal Growth and Design, 2016, 16, 3256-3261.	3.0	12
90	On the development of a dual-layered diamond-coated tool for the effective machining of titanium Ti-6Al-4V alloy. Journal Physics D: Applied Physics, 2017, 50, 015302.	2.8	12

#	Article	IF	Citations
91	Raman spectroscopy of carbon doped MgB2 prepared using carbon encapsulated boron as precursor. Journal of Alloys and Compounds, 2017, 723, 751-756.	5.5	12
92	Plasmon induced brightening of dark exciton in monolayer WSe2 for quantum optoelectronics. Applied Physics Letters, 2019, 114, 201101.	3.3	12
93	Laser Assisted Doping of Silicon Carbide Thin Films Grown by Pulsed Laser Deposition. Journal of Electronic Materials, 2019, 48, 3468-3478.	2.2	12
94	Ultra-Wide Bandgap Copper Oxide: High Performance Solar-Blind Photo-detection. IEEE Electron Device Letters, 2020, 41, 1790-1793.	3.9	12
95	Biocompatible miniature temperature sensor based on whispering gallery modes of Sm3+ activated ZnO optical micro-resonators. Applied Physics Letters, 2021, 118, .	3.3	12
96	Microstructural dependence of penetration depth of Agâ€doped YBa2Cu3O7â^î^thin films probed by atomic force microscopy. Applied Physics Letters, 1996, 68, 1720-1722.	3.3	11
97	Improved critical current densities in bulk FeSe superconductor using ball milled powders and high temperature sintering. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 3214-3220.	1.8	11
98	High-Performance Broadband Photo-Detection in Solution-Processed ZnO-ZnCr ₂ O ₄ Nanowalls. IEEE Electron Device Letters, 2019, 40, 1143-1146.	3.9	11
99	Study of Thermometry in Two-Dimensional Sb2Te3 from Temperature-Dependent Raman Spectroscopy. Nanoscale Research Letters, 2021, 16, 22.	5.7	11
100	Development of short and long-range magnetic order in the double perovskite based frustrated triangular lattice antiferromagnet Ba\$\$_{2}\$\$MnTeO\$\$_{6}\$\$. Scientific Reports, 2021, 11, 6959.	3.3	11
101	A review on realizing the modern optoelectronic applications through persistent photoconductivity. Journal Physics D: Applied Physics, 2022, 55, 393001.	2.8	11
102	Role of oxide barrier in intergranular tunnel junctions: An enhanced magnetoresistance in SiO2 and ZnO coated Fe3O4 nanoparticle compacts. Journal of Applied Physics, 2008, 103, 07F318.	2.5	10
103	Investigation of low-temperature excitonic and defect emission from Ni-doped ZnO nanoneedles and V-doped ZnO nanostructured film. New Journal of Physics, 2010, 12, 023007.	2.9	10
104	Adhesive Microcrystalline Diamond Coating on Surface Modified Non-Carbide Forming Substrate Using Hot Filament CVD. Materials Express, 2012, 2, 115-120.	0.5	10
105	Light induced phase change in Cu2â^'xZn1.3SnS4 thin films. Applied Physics Letters, 2014, 104, 152106.	3.3	10
106	Variable range hopping crossover and magnetotransport in PLD grown Sb doped ZnO thin film. Semiconductor Science and Technology, 2017, 32, 045008.	2.0	10
107	Top-seeded infiltration growth of (Y, Gd)Ba ₂ Cu ₃ Oy bulk superconductors with high critical current densities. Superconductor Science and Technology, 2017, 30, 105015.	3.5	10
108	Controlled piezotronic properties on recoverable energy storage density in rare-earth ions doped epitaxial PZT thin films. Journal Physics D: Applied Physics, 2019, 52, 304001.	2.8	10

#	Article	IF	CITATIONS
109	Realization of highly conducting $\langle i \rangle n \langle i \rangle$ -type diamond by phosphorus ion implantation. Applied Physics Letters, 2021, 118, .	3.3	10
110	Thickness-Dependent Domain Relaxation Dynamics Study in Epitaxial K _{0.5} Na _{0.5} NbO ₃ Ferroelectric Thin Films. ACS Applied Materials & Amp; Interfaces, 2021, 13, 36407-36415.	8.0	10
111	Growth and characterization of diamond particles, diamond films, and CNT-diamond composite films deposited simultaneously by hot filament CVD. Journal of Materials Science, 2015, 50, 144-156.	3.7	9
112	Influence of boron doping on mechanical and tribological properties in multilayer CVD-diamond coating systems. Bulletin of Materials Science, 2016, 39, 1753-1761.	1.7	9
113	Charged vacancy induced enhanced piezoelectric response of reactive assistive IBSD grown AlN thin films. Journal Physics D: Applied Physics, 2017, 50, 015601.	2.8	9
114	Microstrain engineered magnetic properties in Bi _{1â^²<i>y</i>} Ti _{<i>y</i>} O _{3â^² deviation from N©el's 1/<i>d</i>} deviation from NA©el's 1/ <i></i>	<i}[< i="">< 1.6</i}[<>	/sub>nanopa
115	Effect of interfacial oxidation layer in spin pumping experiments on Ni80Fe20/SrIrO3 heterostructures. Journal of Applied Physics, 2020, 128, .	2.5	9
116	Long-Lasting Persistent Photoconductivity in Au/CuO Thin Films for Optical Memory. IEEE Photonics Technology Letters, 2020, 32, 329-332.	2.5	9
117	SrS:Ce/ZnS:Mn-A di-band phosphor for near-UV and blue LED-converted white-light emitting diodes. Journal of Luminescence, 2009, 129, 991-995.	3.1	8
118	Effect of temperature on the stability of diamond particles and continuous thin films by Raman imaging. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	8
119	Magnetic phases of erbium orthochromite. Materials Research Express, 2014, 1, 036102.	1.6	8
120	Self-polarization effect on large photovoltaic response in lead free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 epitaxial film. Applied Physics Letters, 2018, 113, .	3.3	8
121	Strong rare-earth size dependence of TcinRSr2Cu2.85Re0.15Oz. Physical Review B, 1996, 53, 8604-8607.	3.2	7
122	Growth of highly oriented HfO2 thin films of monoclinic phase on yttrium-stabilized ZrO2 and Si substrates by pulsed-laser deposition. Applied Physics Letters, 2005, 87, 241504.	3.3	7
123	Effect of Ar annealing on the magnetic and transport properties of Pr0.7Sr0.3MnO3. Journal of Magnetism and Magnetic Materials, 2006, 303, e342-e346.	2.3	7
124	Formation of one-dimensional ZnO nanowires from screw-dislocation-driven two-dimensional hexagonal stacking on diamond substrate using nanoparticle-assisted pulsed laser deposition. Journal Physics D: Applied Physics, 2014, 47, 034016.	2.8	7
125	Enhanced photo-fenton and photoelectrochemical activities in nitrogen doped brownmillerite KBiFe2O5. Scientific Reports, 2022, 12, 5111.	3.3	7
126	Signature of a randomness-driven spin-liquid state in a frustrated magnet. Communications Physics, 2022, 5, .	5.3	7

#	Article	IF	CITATIONS
127	Electrical resistivity, thermoelectric power and electron spin resonance studies on $Pr(1\hat{a}^2x)SrxMnO3$ (x=0.2, 0.26 and 0.3). Journal of Alloys and Compounds, 2008, 466, 12-16.	5 . 5	6
128	Study of pulsed laser deposited ZnGa ₂ O ₄ : Mn phosphor thin films in an oxygen controlled environment. Journal Physics D: Applied Physics, 2009, 42, 155301.	2.8	6
129	Synthesis and characterisation of CulnGaS ₂ nano-ink for photovoltaic applications. Journal of Experimental Nanoscience, 2013, 8, 320-325.	2.4	6
130	Reversible p -type conductivity in H passivated nitrogen and phosphorous codoped ZnO thin films using rapid thermal annealing. Applied Surface Science, 2017, 400, 312-317.	6.1	6
131	Stabilization heat treatment and functional response of 0.65 [Pb(Mg1/3Nb2/3)O3]-0.35 [PbTiO3] ceramics. Materials Research Bulletin, 2017, 95, 47-55.	5.2	6
132	Flux pinning and improved critical current density in superconducting boron doped diamond films. Journal of Physics Communications, 2018, 2, 045015.	1.2	6
133	High temperature magnetic studies on Bi1- $\langle i\rangle \times \langle i\rangle $ Ca $\langle i\rangle \times \langle i\rangle $ Fe1â $^{\prime\prime}\langle i\rangle \times \langle i\rangle $ Ti $\langle i\rangle \times \langle i\rangle $ Observation of Hopkinson-like effect above TN. Journal of Applied Physics, 2018, 124, .	2.5	6
134	Special issue on magnetoelectrics and their applications. Journal Physics D: Applied Physics, 2019, 52, 100301.	2.8	6
135	Realization of $1\hat{A}^{1}/4$ m thick, crack-free and smooth PMN-PT film in the MPB through PLD: A comprehensive study. Ceramics International, 2020, 46, 26767-26776.	4.8	6
136	Femtosecond Pulse Ablation Assisted Mg-ZnO Nanoparticles for UV-Only Emission. Nanomaterials, 2020, 10, 1326.	4.1	6
137	Study of absorption of radio frequency field by gold nanoparticles and nanoclusters in biological medium. Electromagnetic Biology and Medicine, 2020, 39, 183-195.	1.4	6
138	Thermally stimulated luminescence of alkaline earth sulphide phosphors doped with cerium and samarium impurities. Materials Science and Technology, 1987, 3, 616-620.	1.6	5
139	Growth and microstructural study of TmBa2Cu3O7- deltathin films on LaAlO3. Superconductor Science and Technology, 1995, 8, 108-111.	3.5	5
140	Effect of substrate on the electrical transport property of Ba2FeNbO6double perovskite thin films. Journal Physics D: Applied Physics, 2007, 40, 1430-1434.	2.8	5
141	Growth and tribological properties of diamond films on silicon and tungsten carbide substrates. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	5
142	Polarity control and enhanced luminescence characteristics of semi-polar ZnO nanostructures grown on non-polar MgO(100) substrates. RSC Advances, 2016, 6, 93125-93129.	3.6	5
143	Microstructural analysis of co-sintered PSLZT-NZFO layered magnetoelectric composite. Ferroelectrics, 2017, 516, 60-66.	0.6	5
144	Effect of Ag Addition on the Surface Topography and the Vibrational Dynamics of MgB2. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2033-2038.	1.8	5

#	Article	IF	CITATIONS
145	Origin of defect dipoles in Fe doped Pb(Zr _{<i>x</i>} Ti _{1â^'<i>x</i>) Tj ETQq1 1 0.784314 rgBT}	/Oyerlock	1g Tf 50 742
146	Studies on ferroelectric and nanomechanical response of single-layered PZT thick film for energy harvester applications. Ferroelectrics, 2019, 551, 17-23.	0.6	5
147	Realization of sharp visible WGM lasing from Sm ³⁺ :ZnO micro-spheres fabricated by laser ablation technique. Journal Physics D: Applied Physics, 2020, 53, 135302.	2.8	5
148	Large microwave inductance of granular boron-doped diamond superconducting films. Applied Physics Letters, $2021,118,.$	3. 3	5
149	N ⁺ -ion implantation induced enhanced conductivity in polycrystalline and single crystal diamond. RSC Advances, 2021, 11, 23686-23699.	3.6	5
150	A-site dependent percolative thermopower and Griffiths phase in Pr(0.7â^2x)HoxSr0.3MnO3 (x=0.0, 0.04,) Tj ETQ	q0 <u>0</u> 0 rgB	T ¼Overlock 1
151	FORMATION OF ZnO NANOBRUSHES IN DIRECT ATMOSPHERE USING A CARBON CATALYST AND A Zn METAL SOURCE. Nano, 2008, 03, 361-365.	1.0	4
152	Room temperature WGM resonances in the red spectral range from Ho3+ activated ZnO micro-spherical cavities. Applied Physics Letters, 2018, 112, .	3.3	4
153	Selective area laser-assisted doping of SiC thin films and blue light electroluminescence. Journal Physics D: Applied Physics, 2019, 52, 48LT01.	2.8	4
154	ZnO/Au/ZnO Configuration for High Performance Multiband UV Photo-Detection., 2019, 3, 1-4.		4
155	Influence of Ca doping on Xâ€ray photoelectron coreâ€level spectra of magnetoelectric bulk BiFeO ₃ . Surface and Interface Analysis, 2021, 53, 798-807.	1.8	4
156	Zinc Oxide: The Versatile Material with an Assortment of Physical Properties. Springer Series in Materials Science, 2014, , 1-38.	0.6	4
157	Diamondâ€"the ultimate material for exploring physics of spin-defects for quantum technologies and diamondtronics. Journal Physics D: Applied Physics, 2022, 55, 333002.	2.8	4
158	acâ€susceptibility studies on Zr1â^'xHoxCo2[0â‰xâ‰1] system and their hydrides. Journal of Applied Physics, 1995, 77, 2090-2093.	2.5	3
159	Effect of grain network modifications due to additives on critical current (Ic) in Bi-2212 superconductor. Physica C: Superconductivity and Its Applications, 1999, 316, 119-128.	1.2	3
160	Effect of rare earth ion substitution on the magnetic and transport properties of Pr $\mbox{mathsf}\{0.7\}\$ RE $\mbox{mathsf}\{0.04\}\$ mathsf $\mbox{0.26}\$ mathsf $\mbox{0.26}\$ (RE = Er $\mbox{mathsf}\{3+\}\$,) Tj ETQ	q01050 rgB	T ¦Overlock 1
161	Synthesis of Novel ZnO Hexagonal Nanocones by Direct Thermal Evaporation Method. Journal of Nanoscience and Nanotechnology, 2009, 9, 5307-5310.	0.9	3
162	Carbon-based nanoscience and nanotechnology: where are we, where are we heading?. Journal Physics D: Applied Physics, 2010, 43, 370301.	2.8	3

#	Article	IF	CITATIONS
163	Three decades of scanning tunnelling microscopy that changed the course of surface science. Journal Physics D: Applied Physics, 2011, 44, 460301.	2.8	3
164	Application Worthy SPIONs: Coated Magnetic Nanoparticles. IEEE Transactions on Magnetics, 2014, 50, 1-6.	2.1	3
165	Integration of ferroelectric Pb(Zr0.52Ti0.48)O3 thin films on conducting nanocrystalline diamond for high performance device applications. Applied Physics Letters, 2018, 113, .	3.3	3
166	Effective Bandgap Engineering in Perovskite Ferroelectrics by Successive Multiple Doping. Physica Status Solidi (B): Basic Research, 2020, 257, 1900272.	1.5	3
167	Metal–insulator transition in epitaxial Ga-doped ZnO films via controlled thickness. Journal of Physics Condensed Matter, 2021, 33, 105703.	1.8	3
168	Stacking angle dependent multiple excitonic resonances in bilayer tungsten diselenide. Nanophotonics, 2020, 9, 3881-3887.	6.0	3
169	Electrical transport and morphological study of PLD-grown nanostructured amorphous carbon thin films. Nanotechnology, 2006, 17, 5244-5247.	2.6	2
170	Pure spin current transport in gallium doped zinc oxide. Applied Physics Letters, 2017, 110, 052403.	3.3	2
171	Localization crossover and phase coherent electron transport in a-InGaZnO4 thin films. Applied Physics Letters, 2017, 110, 122101.	3.3	2
172	Plasmon-Assisted Selective Enhancement of Direct-Band Transitions in Multi-Layer MoS < sub>2 < \mid sub>. IEEE Photonics Journal, 2019, 11, 1-6.	2.0	2
173	Exciton Lasing in ZnO-ZnCr ₂ O ₄ Nanowalls. IEEE Photonics Journal, 2019, 11, 1-7.	2.0	2
174	Anomalous magnetic behavior and complex magnetic structure of proximate LaCrO ₃ â€"LaFeO ₃ system. Materials Research Express, 2019, 6, 126119.	1.6	2
175	Single-ion anisotropy driven splitting of spin wave resonances in BiFeO ₃ at low temperature. Journal of Physics Condensed Matter, 2020, 32, 405701.	1.8	2
176	Pairâ€Emissionâ€Induced Nearâ€Infrared Lasing from Ceramic Ga:LaCrO 3 Microcrystals at Room Temperature. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000519.	2.4	2
177	Chemical pressure induced near-complete suppression of spin-wave excitations in $Bi < ub > 0.9 < sub > 0.1 < sub > FeO < sub > 2.95 < sub > (A = Ba, Ca)$. Journal Physics D: Applied Physics, 2020, 53, 495302.	2.8	2
178	Enhancement of magnetic properties in compressively strained PrVO3 thin films. Physical Review Materials, 2019, 3, .	2.4	2
179	Evidence of electronic phase separation in Er3+-doped La0.8Sr0.2MnO3. Applied Physics Letters, 2003, 82, 2865-2867.	3.3	1
180	PLD Growth of CNTs using a Nanostuctured Ni Buffer Layer: Dependence of H2 partial Pressure. Materials Research Society Symposia Proceedings, 2006, 951, 15.	0.1	1

#	Article	IF	CITATIONS
181	Optical And Magnetic Properties Of Monodispersed α–Fe[sub 2]O[sub 3] Nanoparticle Aggregates. AIP Conference Proceedings, 2008, , .	0.4	1
182	White Luminescence of Amorphous SiO2Capped and Uncapped Zn1-m-nS: Ce0.0005, Li0.0005, Mnn($1 < n <$) Tj 2014, 3, R115-R120.	ETQq0 0 (1.8	O rgBT /Overlo 1
183	Adhesion at WC/diamond interfaces - A theoretical study. AIP Conference Proceedings, 2015, , .	0.4	1
184	Enhanced electron-phonon coupling and critical current density in rapid thermally quenched MgB2 bulk samples. AIP Advances, 2017, 7, .	1.3	1
185	Fabrication and Characterization of Cu2â^'XZn1.3SnS4 Kesterite Thin Films Synthesized by Solvent Based Process Method for Photovoltaic Solar Energy Applications. Lecture Notes in Mechanical Engineering, 2019, , 241-247.	0.4	1
186	Nanoscale Probing of Magnetic and Electrical Properties of YIG/Si (100) Thin Films Grown by Pulsed Laser Deposition. IEEE Magnetics Letters, 2020, 11, 1-5.	1.1	1
187	Simultaneous laser doping and annealing to form lateral p–n junction diode structure on silicon carbide films. Journal of Micromanufacturing, 0, , 251659842110162.	1.1	1
188	Effect of Oxygen Pressure on Photoluminescence Spectra and Hall Coefficients of Li–Ni Co-Doped ZnO Films Grown by a Pulsed Laser Deposition. Springer Series in Materials Science, 2014, , 91-99.	0.6	1
189	Magnetotransport correlations in Pr- and La-based manganites. Solid State Communications, 2001, 120, 469-474.	1.9	O
190	Double-strain effect in doped La0.7Ca0.3MnO3PLD grown thin films and fabrication of high-resistance tunnel junction using a novel nano-scale insulating tunnel barrier. Journal Physics D: Applied Physics, 2002, 35, 287-290.	2.8	0
191	Evidence of reduction in spin disorder by Ho3+doping in La0.7Ca0.3MnO. Philosophical Magazine, 2003, 83, 1631-1643.	1.6	О
192	Structural and Morphological Characterization of Nanostructured Cobalt Ferrite Thin Films by Pulsed Laser Deposition. Materials Research Society Symposia Proceedings, 2006, 962, 1.	0.1	0
193	Transport Studies of Transition Metal Ion Doped ZnO: Bulk and Thin Films. Materials Research Society Symposia Proceedings, 2006, 957, 1.	0.1	O
194	Synthesis and Formation Mechanism of ZnO Nanobrushes. , 2010, , .		0
195	Thin film growth, electrical transport and ohmic contact studies of p-ZnO. , 2010, , .		O
196	Electrical surface-resistivity, dielectric resonance, polarization and magnetic properties of Bi0.5Sr0.5FeO3â°Î'thin films grown by pulsed laser deposition. Journal Physics D: Applied Physics, 2014, 47, 355304.	2.8	0
197	The chance of a bullet: when the great war killed Henry Moseley. Journal Physics D: Applied Physics, 2015, 48, 500302.	2.8	O
198	100 years of crystallography: new dimensions offered by large scale facilities. Journal Physics D: Applied Physics, 2015, 48, 500301.	2.8	0

#	ARTICLE	IF	CITATIONS
199	Optical and magnetic characterization of transition metal ion doped ZnO microspheres synthesized via laser ablation in air. Proceedings of SPIE, 2017, , .	0.8	0
200	Size-dependent whispering gallery modes in Au-coated ZnO microrods. Journal of Materials Science: Materials in Electronics, $0,1.$	2.2	0
201	Low-Temperature Photoluminescence of Sb-doped ZnO Nanowires Synthesized on Sb-coated Si Substrate by Chemical Vapor Deposition Method. Springer Series in Materials Science, 2014, , 331-339.	0.6	O
202	Synthesis and Characterization of ZnO-Based Phosphors and Related Phosphor Composites in Bulk, Thin Film and Nano Form. Springer Series in Materials Science, 2014, , 247-268.	0.6	0
203	Interplay of piezoresponse and magnetic behavior in $Bi < 0.9 < sub > 0.9 < sub > 0.1 < sub > FeO < sub > 2.95 < sub > (A = Ba, Ca) and Bi < sub > 0.9 < sub > 0.05 < sub > $	3.6	0