
Jordi Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131049/publications.pdf Version: 2024-02-01

LODDI COMEZ

#	Article	IF	CITATIONS
1	Transmission of Hepatitis C Virus by a Cardiac Surgeon. New England Journal of Medicine, 1996, 334, 555-561.	27.0	360
2	Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. Aids, 2002, 16, 2385-2390.	2.2	197
3	Quasispecies and its impact on viral hepatitis. Virus Research, 2007, 127, 131-150.	2.2	109
4	Unfinished Stories on Viral Quasispecies and Darwinian Views of Evolution. Journal of Molecular Biology, 2010, 397, 865-877.	4.2	82
5	High-Resolution Hepatitis C Virus Subtyping Using NS5B Deep Sequencing and Phylogeny, an Alternative to Current Methods. Journal of Clinical Microbiology, 2015, 53, 219-226.	3.9	74
6	Diagnosis, management and treatment of chronic Chagas' gastrointestinal disease in areas where Trypanosoma cruzi infection is not endemic. GastroenterologÃa Y HepatologÃa, 2010, 33, 191-200.	0.5	71
7	In vitro characterization of a miR-122-sensitive double-helical switch element in the 5′ region of hepatitis C virus RNA. Nucleic Acids Research, 2009, 37, 5498-5510.	14.5	60
8	Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment. Journal of Virology, 2017, 91, .	3.4	42
9	Specific Cleavage of Hepatitis C Virus RNA Genome by Human RNase P. Journal of Biological Chemistry, 2002, 277, 30606-30613.	3.4	40
10	Characterization of a cyanobacterial RNase P ribozyme recognition motif in the IRES of foot-and-mouth disease virus reveals a unique structural element. Rna, 2007, 13, 849-859.	3.5	34
11	Characterizing the function and structural organization of the 5' tRNA-like motif within the hepatitis C virus quasispecies. Nucleic Acids Research, 2005, 33, 1487-1502.	14.5	30
12	Resistance of high fitness hepatitis C virus to lethal mutagenesis. Virology, 2018, 523, 100-109.	2.4	30
13	RNA self-cleavage activated by ultraviolet light-induced oxidation. Nucleic Acids Research, 2012, 40, 1748-1766.	14.5	29
14	An engineered inhibitor RNA that efficiently interferes with hepatitis C virus translation and replication. Antiviral Research, 2012, 94, 131-138.	4.1	27
15	RNase III cleavage demonstrates a long range RNA: RNA duplex element flanking the hepatitis C virus internal ribosome entry site. Nucleic Acids Research, 2005, 33, 5250-5261.	14.5	24
16	The 7472insC mtDNA mutation impairs 5′ and 3′ processing of tRNASer(UCN). Biochemical and Biophysical Research Communications, 2004, 322, 803-813.	2.1	23
17	A magnesium-induced RNA conformational switch at the internal ribosome entry site of hepatitis C virus genome visualized by atomic force microscopy. Nucleic Acids Research, 2015, 43, 565-580.	14.5	23
18	Broad and Dynamic Diversification of Infectious Hepatitis C Virus in a Cell Culture Environment. Journal of Virology, 2020, 94, .	3.4	20

Jordi Gomez

#	Article	IF	CITATIONS
19	A new implication of quasispecies dynamics: Broad virus diversification in absence of external perturbations. Infection, Genetics and Evolution, 2020, 82, 104278.	2.3	20
20	Three Properties of the Hepatitis C Virus RNA Genome Related to Antiviral Strategies Based on RNA-Therapeutics: Variability, Structural Conformation and tRNA Mimicry. Current Pharmaceutical Design, 2004, 10, 3741-3756.	1.9	17
21	Large accumulation of mRNA and DNA point modifications in a plant senescent tissue. FEBS Letters, 2000, 472, 14-16.	2.8	16
22	Characterization of the structure and variability of an internal region of hepatitis C virus RNA for M1 RNA guide sequence ribozyme targeting. Journal of General Virology, 2003, 84, 1545-1548.	2.9	16
23	Structural analysis of hepatitis C RNA genome using DNA microarrays. Nucleic Acids Research, 2004, 32, e90-e90.	14.5	16
24	SARS-CoV-2 Mutant Spectra at Different Depth Levels Reveal an Overwhelming Abundance of Low Frequency Mutations. Pathogens, 2022, 11, 662.	2.8	16
25	Catalytic RNase P RNA fromSynechocystis sp. cleaves the hepatitis C virus RNA near the AUG start codon. FEBS Letters, 2004, 577, 517-522.	2.8	15
26	Viral tRNA Mimicry from a Biocommunicative Perspective. Frontiers in Microbiology, 2017, 8, 2395.	3.5	15
27	Amino Acid Substitutions Associated with Treatment Failure for Hepatitis C Virus Infection. Journal of Clinical Microbiology, 2020, 58, .	3.9	15
28	Dissimilar Conservation Pattern in Hepatitis C Virus Mutant Spectra, Consensus Sequences, and Data Banks. Journal of Clinical Medicine, 2020, 9, 3450.	2.4	12
29	The archaeology of coding RNA. Annals of the New York Academy of Sciences, 2019, 1447, 119-134.	3.8	10
30	Synergistic Lethal Mutagenesis of Hepatitis C Virus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	10
31	SARS-CoV-2 Point Mutation and Deletion Spectra and Their Association with Different Disease Outcomes. Microbiology Spectrum, 2022, 10, e0022122.	3.0	10
32	Messenger RNAs bearing tRNA-like features exemplified by interferon alfa 5 mRNA. Cellular and Molecular Life Sciences, 2015, 72, 3747-3768.	5.4	9
33	Virus is a Signal for the Host Cell. Biosemiotics, 2015, 8, 483-491.	1.4	7
34	Population Disequilibrium as Promoter of Adaptive Explorations in Hepatitis C Virus. Viruses, 2021, 13, 616.	3.3	7
35	The Impact of Rapid Evolution of the Hepatitis Viruses. , 1999, , 345-376.		6
36	Geneticin Stabilizes the Open Conformation of the 5′ Region of Hepatitis C Virus RNA and Inhibits Viral Replication. Antimicrobial Agents and Chemotherapy, 2016, 60, 925-935.	3.2	6

#	Article	IF	CITATIONS
37	Health-related quality of life and nursing-sensitive outcomes in mechanically ventilated patients in an Intensive Care Unit: a study protocol. BMC Nursing, 2016, 15, 8.	2.5	4