John Cambier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6129600/publications.pdf Version: 2024-02-01

		5896	11607
251	21,121	81	135
papers	citations	h-index	g-index
323	323	323	15436
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Peripheral immunophenotyping of AITD subjects reveals alterations in immune cells in pediatric vs adult-onset AITD. IScience, 2022, 25, 103626.	4.1	5
2	Magnetic Enrichment of SARS-CoV-2 Antigen-Binding B Cells for Analysis of Transcriptome and Antibody Repertoire. Magnetochemistry, 2022, 8, 23.	2.4	2
3	Preclinical Analysis of Candidate Anti-Human CD79 Therapeutic Antibodies Using a Humanized CD79 Mouse Model. Journal of Immunology, 2022, 208, 1566-1584.	0.8	8
4	Therapeutic Targeting of Autoreactive B Cells: Why, How, and When?. Biomedicines, 2021, 9, 83.	3.2	10
5	Inhibitory Receptor Trap: A Platform for Discovery of Inhibitory Receptors That Utilize Inositol Lipid and Phosphotyrosine Phosphatase Effectors. Frontiers in Immunology, 2020, 11, 592329.	4.8	5
6	Endotypes in T1D: B lymphocytes and early onset. Current Opinion in Endocrinology, Diabetes and Obesity, 2020, 27, 225-230.	2.3	18
7	Selective Loss of Responsiveness to Exogenous but Not Endogenous Cyclic-Dinucleotides in Mice Expressing STING-R231H. Frontiers in Immunology, 2020, 11, 238.	4.8	9
8	Soluble Antigen Arrays for Selective Desensitization of Insulin-Reactive B Cells. Molecular Pharmaceutics, 2019, 16, 1563-1572.	4.6	14
9	A Precision B Cell–Targeted Therapeutic Approach to Autoimmunity Caused by Phosphatidylinositol 3-Kinase Pathway Dysregulation. Journal of Immunology, 2019, 202, 3381-3393.	0.8	11
10	Non-Antibody-Secreting Functions of B Cells and Their Contribution to Autoimmune Disease. Annual Review of Cell and Developmental Biology, 2019, 35, 337-356.	9.4	25
11	Targeting DDR2 enhances tumor response to anti–PD-1 immunotherapy. Science Advances, 2019, 5, eaav2437.	10.3	92
12	Elevated PTEN expression maintains anergy in human B cells and reveals unexpectedly high repertoire autoreactivity. JCl Insight, 2019, 4, .	5.0	49
13	Protective role of B cells in sterile particulate–induced lung injury. JCl Insight, 2019, 4, .	5.0	17
14	High-efficiency RNA-based reprogramming of human primary fibroblasts. Nature Communications, 2018, 9, 745.	12.8	117
15	Loss of B-Cell Anergy in Type 1 Diabetes Is Associated With High-Risk HLA and Non-HLA Disease Susceptibility Alleles. Diabetes, 2018, 67, 697-703.	0.6	24
16	Mesenchymal Stem Cells Recruit CCR2+ Monocytes To Suppress Allergic Airway Inflammation. Journal of Immunology, 2018, 200, 1261-1269.	0.8	45
17	The cGAS/STING Pathway Detects Streptococcus pneumoniae but Appears Dispensable for Antipneumococcal Defense in Mice and Humans. Infection and Immunity, 2018, 86, .	2.2	18
18	Activation of thyroid antigen-reactive B cells in recent onset autoimmune thyroid disease patients. Journal of Autoimmunity, 2018, 89, 82-89.	6.5	36

#	Article	IF	CITATIONS
19	cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nature Medicine, 2018, 24, 50-61.	30.7	205
20	The c-Myc/miR17-92/PTEN Axis Tunes PI3K Activity to Control Expression of Recombination Activating Genes in Early B Cell Development. Frontiers in Immunology, 2018, 9, 2715.	4.8	24
21	Silencing of high-affinity insulin-reactive B lymphocytes by anergy and impact of the NOD genetic background in mice. Diabetologia, 2018, 61, 2621-2632.	6.3	15
22	B Cell–Intrinsic STING Signaling Triggers Cell Activation, Synergizes with B Cell Receptor Signals, and Promotes Antibody Responses. Journal of Immunology, 2018, 201, 2641-2653.	0.8	47
23	Putting on the Brakes: Regulatory Kinases and Phosphatases Maintaining B Cell Anergy. Frontiers in Immunology, 2018, 9, 665.	4.8	58
24	The common HAQ STING variant impairs cGAS-dependent antibacterial responses and is associated with susceptibility to Legionnaires' disease in humans. PLoS Pathogens, 2018, 14, e1006829.	4.7	43
25	Impaired B cell function during viral infections due to PTEN-mediated inhibition of the PI3K pathway. Journal of Experimental Medicine, 2017, 214, 931-941.	8.5	21
26	B cells in type 1 diabetes mellitus and diabetic kidney disease. Nature Reviews Nephrology, 2017, 13, 712-720.	9.6	101
27	Detection and Enrichment of Rare Antigen-specific B Cells for Analysis of Phenotype and Function. Journal of Visualized Experiments, 2017, , .	0.3	34
28	B Cell Receptor Affinity for Insulin Dictates Autoantigen Acquisition and B Cell Functionality in Autoimmune Diabetes. Journal of Clinical Medicine, 2016, 5, 98.	2.4	15
29	Mechanisms of Peripheral B Cell Tolerance. , 2016, , 83-91.		2
30	Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells. Journal of Experimental Medicine, 2016, 213, 751-769.	8.5	104
31	Targeting B cells in treatment of autoimmunity. Current Opinion in Immunology, 2016, 43, 39-45.	5.5	52
32	Contamination of DNase Preparations Confounds Analysis of the Role of DNA in Alum-Adjuvanted Vaccines. Journal of Immunology, 2016, 197, 1221-1230.	0.8	14
33	γδT Cells Shape Preimmune Peripheral B Cell Populations. Journal of Immunology, 2016, 196, 217-231.	0.8	41
34	Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight, 2016, 1, e88242.	5.0	108
35	Of <scp>ITIM</scp> s, <scp>ITAM</scp> s, and <scp>ITAM</scp> is: revisiting immunoglobulin Fc receptor signaling. Immunological Reviews, 2015, 268, 66-73.	6.0	117
36	γδT cells affect IL-4 production and B-cell tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E39-E48.	7.1	45

#	Article	IF	CITATIONS
37	Imbalanced PTEN and PI3K Signaling Impairs Class Switch Recombination. Journal of Immunology, 2015, 195, 5461-5471.	0.8	19
38	B cell expression of the SH2-containing inositol 5-phosphatase (SHIP-1) is required to establish anergy to high affinity, proteinacious autoantigens. Journal of Autoimmunity, 2015, 62, 45-54.	6.5	32
39	Loss of Anergic B Cells in Prediabetic and New-Onset Type 1 Diabetic Patients. Diabetes, 2015, 64, 1703-1712.	0.6	79
40	General Parity between Trio and Pairwise Breeding of Laboratory Mice in Static Caging. Journal of Immunology, 2014, 193, 4757-4760.	0.8	8
41	Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production. Cell, 2014, 159, 1549-1562.	28.9	698
42	David W. Talmage, 1919-2014. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6533-6533.	7.1	0
43	B cells and type 1 diabetes $\hat{a} \in $ in mice and men. Immunology Letters, 2014, 160, 128-132.	2.5	29
44	A Balance between B Cell Receptor and Inhibitory Receptor Signaling Controls Plasma Cell Differentiation by Maintaining Optimal Ets1 Levels. Journal of Immunology, 2014, 193, 909-920.	0.8	53
45	Role of B Lymphocytes in the Pathogenesis of Type 1 Diabetes. Current Diabetes Reports, 2014, 14, 543.	4.2	46
46	Anti-CD79 Antibody Induces B Cell Anergy That Protects against Autoimmunity. Journal of Immunology, 2014, 192, 1641-1650.	0.8	35
47	Cyclicâ€diâ€GMP and cyclicâ€diâ€AMP activate the NLRP3 inflammasome. EMBO Reports, 2013, 14, 900-906.	4.5	75
48	COPD is associated with production of autoantibodies to a broad spectrum of self-antigens, correlative with disease phenotype. Immunologic Research, 2013, 55, 48-57.	2.9	72
49	Integrated immunology in Colorado. Immunologic Research, 2013, 55, 1-2.	2.9	1
50	Phosphatase regulation of immunoreceptor signaling in T cells, B cells and mast cells. Current Opinion in Immunology, 2013, 25, 313-320.	5.5	12
51	STING/MPYS Mediates Host Defense against <i>Listeria monocytogenes</i> Infection by Regulating Ly6Chi Monocyte Migration. Journal of Immunology, 2013, 190, 2835-2843.	0.8	45
52	B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000prime Reports, 2013, 5, 40.	5.9	75
53	Autoimmunity risk alleles: hotspots in B cell regulatory signaling pathways. Journal of Clinical Investigation, 2013, 123, 1928-1931.	8.2	31
54	VISA Is Required for B Cell Expression of TLR7. Journal of Immunology, 2012, 188, 248-258.	0.8	17

John Cambier

#	Article	IF	CITATIONS
55	$\hat{I} \pm \hat{I}^2$ TCR+T Cells, but Not B Cells, Promote Autoimmune Keratitis in B10 Mice Lacking $\hat{I}^3\hat{I}$ T Cells. , 2012, 53, 301.		5
56	Retention of Anergy and Inhibition of Antibody Responses during Acute Gammaherpesvirus 68 Infection. Journal of Immunology, 2012, 189, 2965-2974.	0.8	13
57	Hypoxia-inducible factor-1 alpha–dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2784-93.	7.1	455
58	B Cell Receptor Signal Transduction in the GC Is Short-Circuited by High Phosphatase Activity. Science, 2012, 336, 1178-1181.	12.6	249
59	The inositol 5-phosphatase SHIP-1 and adaptors Dok-1 and 2 play central roles in CD4-mediated inhibitory signaling. Immunology Letters, 2012, 143, 122-130.	2.5	7
60	B cell maintenance and function in aging. Seminars in Immunology, 2012, 24, 342-349.	5.6	135
61	SMIP-016 in Action: CD37 as a Death Receptor. Cancer Cell, 2012, 21, 597-598.	16.8	6
62	Editorial overview. Current Opinion in Immunology, 2011, 23, 509-511.	5.5	3
63	Monophosphorylation of CD79a and CD79b ITAM Motifs Initiates a SHIP-1 Phosphatase-Mediated Inhibitory Signaling Cascade Required for B Cell Anergy. Immunity, 2011, 35, 746-756.	14.3	142
64	B cells talk to their progenitors. Blood, 2011, 117, 2985-2986.	1.4	2
65	Identification and characterization of a loss-of-function human MPYS variant. Genes and Immunity, 2011, 12, 263-269.	4.1	109
66	Differential STIM1 expression in T and B cell subsets suggests a role in determining antigen receptor signal amplitude. Molecular Immunology, 2011, 48, 1851-1858.	2.2	10
67	A doseâ€dependent role for EBF1 in repressing nonâ€Bâ€cellâ€specific genes. European Journal of Immunology, 2011, 41, 1787-1793.	2.9	33
68	B cell depletion therapy exacerbates murine primary biliary cirrhosis. Hepatology, 2011, 53, 527-535.	7.3	66
69	MPYS Is Required for IFN Response Factor 3 Activation and Type I IFN Production in the Response of Cultured Phagocytes to Bacterial Second Messengers Cyclic-di-AMP and Cyclic-di-GMP. Journal of Immunology, 2011, 187, 2595-2601.	0.8	262
70	CD23-mediated cell signaling in human B cells differs from signaling in cells of the monocytic lineage. Clinical Immunology, 2010, 137, 330-336.	3.2	20
71	The conundrum of inhibitory signaling by ITAMâ€containing immunoreceptors: Potential molecular mechanisms. FEBS Letters, 2010, 584, 4878-4882.	2.8	22
72	B cell activation versus anergy; the antigen receptor as a molecular switch. Immunology Letters, 2010, 128, 6-7.	2.5	19

John Cambier

#	Article	IF	CITATIONS
73	lgG antibodies produced during subcutaneous allergen immunotherapy mediate inhibition of basophil activation via a mechanism involving both Fcl³RIIA and Fcl³RIIB. Immunology Letters, 2010, 130, 57-65.	2.5	76
74	Cellular Reactive Oxygen Species Inhibit MPYS Induction of IFNÎ ² . PLoS ONE, 2010, 5, e15142.	2.5	39
75	Molecular underpinning of Bâ€cell anergy. Immunological Reviews, 2010, 237, 249-263.	6.0	122
76	Establishing Anergy as a Bona Fide In Vivo Mechanism of B Cell Tolerance. Journal of Immunology, 2009, 183, 5439-5441.	0.8	5
77	Endocytic sequestration of the B cell antigen receptor and toll-like receptor 9 in anergic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6262-6267.	7.1	51
78	TLR4-Mediated Signaling Induces MMP9-Dependent Cleavage of B Cell Surface CD23. Journal of Immunology, 2009, 183, 2585-2592.	0.8	24
79	Modulation of in vitro murine B-lymphocyte response by curcumin. Phytomedicine, 2009, 16, 982-988.	5.3	19
80	Change you can B(cell)eive in: recent progress confirms a critical role for B cells in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2009, 16, 293-298.	2.3	25
81	FcÎ ³ RIIB signals inhibit BLyS signaling and BCR-mediated BLyS receptor up-regulation. Blood, 2009, 113, 1464-1473.	1.4	36
82	MHC class II structural requirements for the association with $Igl^{1/2}$, and signaling of calcium mobilization and cell death. Immunology Letters, 2008, 116, 184-194.	2.5	20
83	Regulation of hematopoietic cell function by inhibitory immunoglobulin G receptors and their inositol lipid phosphatase effectors. Immunological Reviews, 2008, 224, 44-57.	6.0	16
84	B Cell Depletion with Anti-CD79 mAbs Ameliorates Autoimmune Disease in MRL/ <i>lpr</i> Mice. Journal of Immunology, 2008, 181, 2961-2972.	0.8	53
85	MPYS, a Novel Membrane Tetraspanner, Is Associated with Major Histocompatibility Complex Class II and Mediates Transduction of Apoptotic Signals. Molecular and Cellular Biology, 2008, 28, 5014-5026.	2.3	363
86	Acquired hematopoietic stem cell defects determine B-cell repertoire changes associated with aging. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11898-11902.	7.1	85
87	Cutting Edge: Acute and Chronic Exposure of Immature B Cells to Antigen Leads to Impaired Homing and SHIP1-Dependent Reduction in Stromal Cell-Derived Factor-1 Responsiveness. Journal of Immunology, 2007, 178, 3353-3357.	0.8	36
88	Cutting Edge: Complement (C3d)-Linked Antigens Break B Cell Anergy. Journal of Immunology, 2007, 179, 2695-2699.	0.8	36
89	A Human CD4 Monoclonal Antibody for the Treatment of T-Cell Lymphoma Combines Inhibition of T-Cell Signaling by a Dual Mechanism with Potent Fc-Dependent Effector Activity. Cancer Research, 2007, 67, 9945-9953.	0.9	54
90	Multiple paths to loss of anergy and gain of autoimmunity. Autoimmunity, 2007, 40, 418-424.	2.6	20

#	Article	IF	CITATIONS
91	B-cell anergy: from transgenic models to naturally occurring anergic B cells?. Nature Reviews Immunology, 2007, 7, 633-643.	22.7	301
92	Modulation of MHC Class II Signal Transduction by CD19. , 2007, 596, 139-148.		13
93	Identification of Anergic B Cells within a Wild-Type Repertoire. Immunity, 2006, 25, 953-962.	14.3	252
94	B cell receptor signaling in human systemic lupus erythematosus. Current Opinion in Rheumatology, 2006, 18, 451-455.	4.3	39
95	Silencing of autoreactive B cells by anergy: a fresh perspective. Current Opinion in Immunology, 2006, 18, 292-297.	5.5	49
96	Maintenance of B cell anergy requires constant antigen receptor occupancy and signaling. Nature Immunology, 2005, 6, 1160-1167.	14.5	185
97	Immunosenescence: a problem of lymphopoiesis, homeostasis, microenvironment, and signaling. John Cambier. Immunological Reviews, 2005, 205, 5-6.	6.0	87
98	Study of SHIP-binding cell surface proteins suggests c-kit as a SHIP-interacting receptor in mast cells. Signal Transduction, 2005, 5, 28-39.	0.4	2
99	Coligation of the B Cell Receptor with Complement Receptor Type 2 (CR2/CD21) Using Its Natural Ligand C3dg: Activation without Engagement of an Inhibitory Signaling Pathway. Journal of Immunology, 2005, 174, 3264-3272.	0.8	73
100	Cognate B Cell Signaling via MHC Class II: Differential Regulation of B Cell Antigen Receptor and MHC Class II/Ig-αβ Signaling by CD22. Journal of Immunology, 2004, 172, 195-201.	0.8	15
101	Two Distinct Tyrosine-based Motifs Enable the Inhibitory Receptor FcγRIIB to Cooperatively Recruit the Inositol Phosphatases SHIP1/2 and the Adapters Grb2/Grap. Journal of Biological Chemistry, 2004, 279, 51931-51938.	3.4	45
102	Src-family kinases in B-cell development and signaling. Oncogene, 2004, 23, 8001-8006.	5.9	137
103	Autonomous SHIP-dependent FcÎ ³ R signaling in pre-B cells leads to inhibition of cell migration and induction of cell death. Immunology Letters, 2004, 92, 75-81.	2.5	15
104	Promotion of B Cell Immune Responses via an Alum-Induced Myeloid Cell Population. Science, 2004, 304, 1808-1810.	12.6	221
105	Ageing, autoimmunity and arthritis: senescence of the B cell compartment - implications for humoral immunity. Arthritis Research, 2004, 6, 131.	2.0	124
106	Regulation of BCR Signal Transduction in B-1 Cells Requires the Expression of the Src Family Kinase Lck. Immunity, 2004, 21, 443-453.	14.3	55
107	B cell antigen receptor signaling 101. Molecular Immunology, 2004, 41, 599-613.	2.2	485
108	Mast cell–dependent migration of effector CD8+ T cells through production of leukotriene B4. Nature Immunology, 2003, 4, 974-981.	14.5	259

#	Article	IF	CITATIONS
109	B lymphocyte activation during cognate interactions with CD4+ T lymphocytes: molecular dynamics and immunologic consequences. Seminars in Immunology, 2003, 15, 325-329.	5.6	59
110	Involvement of CD4 D3–D4 membrane proximal extracellular domain for the inhibitory effect of oxidative stress on activation-induced CD4 down-regulation and its possible role for T cell activation. Molecular Immunology, 2003, 39, 909-921.	2.2	13
111	FcγRIIB activation leads to inhibition of signalling by independently ligated receptors. Biochemical Society Transactions, 2003, 31, 281-285.	3.4	34
112	Downstream of Kinase, p62 <i>dok</i> , ls a Mediator of FcγRIIB Inhibition of FcεRI Signaling. Journal of Immunology, 2002, 168, 4430-4439.	0.8	82
113	The Unique Antigen Receptor Signaling Phenotype of B-1 Cells Is Influenced by Locale but Induced by Antigen. Journal of Immunology, 2002, 169, 1735-1743.	0.8	82
114	Transmodulation of BCR Signaling by Transduction- Incompetent Antigen Receptors: Implications for Impaired Signaling in Anergic B Cells. Journal of Immunology, 2002, 168, 4344-4351.	0.8	35
115	Aging-Dependent Exclusion of Antigen-Inexperienced Cells from the Peripheral B Cell Repertoire. Journal of Immunology, 2002, 168, 5014-5023.	0.8	123
116	B Cell Antigen Receptor Signaling: Roles in Cell Development and Disease. Science, 2002, 296, 1641-1642.	12.6	224
117	Introduction: multifaceted roles of lipids and their catabolites in immune cell signaling. Seminars in Immunology, 2002, 14, 1-6.	5.6	10
118	Ligation of human CD4 interferes with antigen-induced activation of primary T cells. Immunology Letters, 2002, 82, 131-139.	2.5	17
119	FcγRIIB as a potential molecular target for intravenous gamma globulin therapyâ~†â~†â~†â~ Journal of Allergy ar Clinical Immunology, 2001, 108, S95-S98.	1d _{2.9}	31
120	TCR-Induced Transmembrane Signaling by Peptide/MHC Class II Via Associated Ig-alpha /beta Dimers. Science, 2001, 291, 1537-1540.	12.6	103
121	Activation and Anergy in Bone Marrow B Cells of a Novel Immunoglobulin Transgenic Mouse that Is Both Hapten Specific and Autoreactive. Immunity, 2001, 14, 33-43.	14.3	134
122	Ligand-independent Signaling Functions for the B Lymphocyte Antigen Receptor and Their Role in Positive Selection during B Lymphopoiesis. Journal of Experimental Medicine, 2001, 194, 1583-1596.	8.5	137
123	Partially Distinct Molecular Mechanisms Mediate Inhibitory FcγRIIB Signaling in Resting and Activated B Cells. Journal of Immunology, 2001, 167, 204-211.	0.8	50
124	Unique Signaling Properties of B Cell Antigen Receptor in Mature and Immature B Cells: Implications for Tolerance and Activation. Journal of Immunology, 2001, 167, 4172-4179.	0.8	77
125	Interference with Immunoglobulin (Ig)α Immunoreceptor Tyrosine–Based Activation Motif (Itam) Phosphorylation Modulates or Blocks B Cell Development, Depending on the Availability of an Igβ Cytoplasmic Tail. Journal of Experimental Medicine, 2001, 194, 455-470.	8.5	116
126	FcγRIIB-mediated inhibition of T-cell receptor signal transduction involves the phosphorylation of SH2-containing inositol 5-phosphatase (SHIP), dephosphorylation of the linker of activated T-cells (LAT) and inhibition of calcium mobilization. Biochemical Society Transactions, 2001, 29, 840.	3.4	8

#	Article	IF	CITATIONS
127	Mutational Analysis Reveals Multiple Distinct Sites Within FcÎ ³ Receptor IIB That Function in Inhibitory Signaling. Journal of Immunology, 2000, 165, 4453-4462.	0.8	60
128	Cytoplasmic protein tyrosine phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Current Opinion in Immunology, 2000, 12, 307-315.	5.5	114
129	Bilevel control of B-cell activation by the inositol 5-phosphatase SHIP. Immunological Reviews, 2000, 176, 69-74.	6.0	59
130	B-cell antigen receptor competence regulates B-lymphocyte selection and survival. Immunological Reviews, 2000, 176, 141-153.	6.0	45
131	Effects of Src Homology Domain 2 (SH2)-Containing Inositol Phosphatase (SHIP), SH2-Containing Phosphotyrosine Phosphatase (SHP)-1, and SHP-2 SH2 Decoy Proteins on Fcl̂3RIIB1-Effector Interactions and Inhibitory Functions. Journal of Immunology, 2000, 164, 631-638.	0.8	41
132	A VH11Vκ9 B Cell Antigen Receptor Drives Generation of CD5+ B Cells Both In Vivo and In Vitro. Journal of Immunology, 2000, 164, 4586-4593.	0.8	72
133	Differential Regulation of B Cell Development, Activation, and Death by the Src Homology 2 Domain–Containing 5′ Inositol Phosphatase (Ship). Journal of Experimental Medicine, 2000, 191, 1545-1554.	8.5	122
134	Positive Regulation of Interleukin-4-mediated Proliferation by the SH2-containing Inositol-5â€2-phosphatase. Journal of Biological Chemistry, 2000, 275, 29275-29282.	3.4	30
135	The RasGAP-Binding Protein p62dok Is a Mediator of Inhibitory FcÎ ³ RIIB Signals in B Cells. Immunity, 2000, 12, 347-358.	14.3	235
136	Negative regulation of FcïµRI signaling by FcγRII costimulation in human blood basophils. Journal of Allergy and Clinical Immunology, 2000, 106, 337-348.	2.9	131
137	Activating and inhibitory signaling in mast cells: New opportunities for therapeutic intervention?. Journal of Allergy and Clinical Immunology, 2000, 106, 429-440.	2.9	63
138	Distinct Signal Thresholds for the Unique Antigen Receptor–Linked Gene Expression Programs in Mature and Immature B Cells. Journal of Experimental Medicine, 1999, 190, 749-756.	8.5	85
139	B cell development: signal transduction by antigen receptors and their surrogates. Current Opinion in Immunology, 1999, 11, 143-151.	5.5	171
140	Unique features of SHIP, SHP-1 and SHP-2 binding to Fcl̂3RIIb revealed by surface plasmon resonance analysis. Immunology Letters, 1999, 68, 35-40.	2.5	37
141	Antigen-Stimulated Dissociation of BCR mlg from $\lg -\hat{l} \pm / \lg -\hat{l}^2$. Immunity, 1999, 10, 239-248.	14.3	87
142	The Unexpected Complexity of FcÎ ³ RIIB Signal Transduction. Current Topics in Microbiology and Immunology, 1999, , 43-55.	1.1	8
143	Inhibitory Receptors and Their Modes of Action. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 329-334.	1.1	2
144	Phosphorylation of CD19 Y484 and Y515, and linked activation of phosphatidylinositol 3-kinase, are required for B cell antigen receptor-mediated activation of Bruton's tyrosine kinase. Journal of Immunology, 1999, 162, 4438-46.	0.8	91

#	Article	IF	CITATIONS
145	Antigen receptor signaling: integration of protein tyrosine kinase functions. Oncogene, 1998, 17, 1353-1364.	5.9	106
146	CD72-mediated B cell activation involves recruitment of CD19 and activation of phosphatidylinositol 3-kinase. European Journal of Immunology, 1998, 28, 3003-3016.	2.9	46
147	Interleukin-4 overcomes the negative influence of cyclic amp accumulation on antigen receptor stimulated B lymphocytes. Molecular Immunology, 1998, 35, 997-1014.	2.2	13
148	Developmental Regulation of B Lymphocyte Immune Tolerance Compartmentalizes Clonal Selection from Receptor Selection. Cell, 1998, 92, 173-182.	28.9	214
149	Antigens Varying in Affinity for the B Cell Receptor Induce Differential B Lymphocyte Responses. Journal of Experimental Medicine, 1998, 188, 1453-1464.	8.5	138
150	Fc epsilon receptor I-associated lyn-dependent phosphorylation of Fc gamma receptor IIB during negative regulation of mast cell activation. Journal of Immunology, 1998, 160, 1647-58.	0.8	136
151	Asymmetrical phosphorylation and function of immunoreceptor tyrosine-based activation motif tyrosines in B cell antigen receptor signal transduction. Journal of Immunology, 1998, 160, 3305-14.	0.8	62
152	B cell antigen receptor (BCR)-mediated formation of a SHP-2-pp120 complex and its inhibition by Fc gamma RIIB1-BCR coligation. Journal of Immunology, 1998, 161, 684-91.	0.8	20
153	Delivery of B Cell Receptor–internalized Antigen to Endosomes and Class II Vesicles. Journal of Experimental Medicine, 1997, 186, 1299-1306.	8.5	42
154	Qualitative Regulation of B Cell Antigen Receptor Signaling by CD19: Selective Requirement for PI3-Kinase Activation, Inositol-1,4,5-Trisphosphate Production and Ca2+ Mobilization. Journal of Experimental Medicine, 1997, 186, 1897-1910.	8.5	169
155	FcγRIIB1 Inhibition of BCR-Mediated Phosphoinositide Hydrolysis and Ca2+ Mobilization Is Integrated by CD19 Dephosphorylation. Immunity, 1997, 7, 49-58.	14.3	124
156	Co-receptor and accessory regulation of B-cell antigen receptor signal transduction. Immunological Reviews, 1997, 160, 127-138.	6.0	40
157	Qualitatively distinct signaling through T cell antigen receptor subunits. European Journal of Immunology, 1997, 27, 707-716.	2.9	37
158	Differential association of phosphatases with hematopoietic co-receptors bearing immunoreceptor tyrosine-based inhibition motifs. European Journal of Immunology, 1997, 27, 1994-2000.	2.9	133
159	Inhibitory receptors abound?. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5993-5995.	7.1	93
160	B cell antigen receptor desensitization: disruption of receptor coupling to tyrosine kinase activation. Journal of Immunology, 1997, 159, 231-43.	0.8	36
161	Molecular targets of CD45 in B cell antigen receptor signal transduction. Journal of Immunology, 1997, 158, 1116-24.	0.8	27
162	Bacterial superantigens induce Vβ-specific T cell receptor internalization. Molecular Immunology, 1996, 33, 891-900.	2.2	26

#	Article	IF	CITATIONS
163	Distinct mechanisms mediate SHC association with the activated and resting B cell antigen receptor. European Journal of Immunology, 1996, 26, 1960-1965.	2.9	37
164	Selective in vivo recruitment of the phosphatidylinositol phosphatase SHIP by phosphorylated FcγRIIB during negative regulation of IgE-dependent mouse mast cell activation. Immunology Letters, 1996, 54, 83-91.	2.5	121
165	The SHIP phosphatase becomes associated with FcγRIIB1 and is tyrosine phosphorylated during â€~negative' signaling. Immunology Letters, 1996, 54, 77-82.	2.5	95
166	Human and mouse killer-cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phosphatases. Journal of Immunology, 1996, 156, 4531-4.	0.8	263
167	Differential binding activity of ARH1/TAM motifs. Immunology Letters, 1995, 44, 77-80.	2.5	24
168	New nomenclature for the Reth motif (or ARH1/TAM/ARAM/YXXL). Trends in Immunology, 1995, 16, 110.	7.5	249
169	Identification of the tyrosine phosphatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signaling Journal of Experimental Medicine, 1995, 181, 2077-2084.	8.5	249
170	Role of the Syk autophosphorylation site and SH2 domains in B cell antigen receptor signaling Journal of Experimental Medicine, 1995, 182, 1815-1823.	8.5	249
171	Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by Fc gamma RIIB1. Science, 1995, 268, 293-297.	12.6	546
172	Anti-immunoglobulin M activates nuclear calcium/calmodulin-dependent protein kinase II in human B lymphocytes Journal of Experimental Medicine, 1995, 182, 1943-1949.	8.5	13
173	Manipulation of B cell antigen receptor tyrosine phosphorylation using aluminum fluoride and sodium orthovanadate. Molecular Immunology, 1995, 32, 1283-1294.	2.2	13
174	Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). Journal of Immunology, 1995, 155, 3281-5.	0.8	340
175	Phosphorylated immunoreceptor signaling motifs (ITAMs) exhibit unique abilities to bind and activate Lyn and Syk tyrosine kinases. Journal of Immunology, 1995, 155, 4596-603.	0.8	142
176	Distinct structural compartmentalization of the signal transducing functions of major histocompatibility complex class II (Ia) molecules Journal of Experimental Medicine, 1994, 179, 763-768.	8.5	51
177	The B-cell antigen receptor complex: structure and signal transduction. Trends in Immunology, 1994, 15, 393-399.	7.5	198
178	Signal Transduction by the B Cell Antigen Receptor and its Coreceptors. Annual Review of Immunology, 1994, 12, 457-486.	21.8	413
179	Activation of phosphatidylinositol-3' kinase by Src-family kinase SH3 binding to the p85 subunit. Science, 1994, 263, 1609-1612.	12.6	429
180	The hetero-oligomeric antigen receptor complex and its coupling to cytoplasmic effectors. Current Opinion in Genetics and Development, 1994, 4, 55-63.	3.3	25

#	Article	IF	CITATIONS
181	Distinct p53/56lyn and p59fyn domains associate with nonphosphorylated and phosphorylated Ig-alpha Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4268-4272.	7.1	125
182	Analysis of Ig-alpha-tyrosine kinase interaction reveals two levels of binding specificity and tyrosine phosphorylated Ig-alpha stimulation of Fyn activity. EMBO Journal, 1994, 13, 1911-9.	7.8	44
183	Tyrosine kinase and CD45 tyrosine phosphatase activity mediate p21ras activation in B cells stimulated through the antigen receptor. Journal of Immunology, 1994, 152, 3306-16.	0.8	26
184	gp120 ligation of CD4 induces p56lck activation and TCR desensitization independent of TCR tyrosine phosphorylation. Journal of Immunology, 1994, 153, 2905-17.	0.8	56
185	Point mutations define a mIgM transmembrane region motif that determines intersubunit signal transduction in the antigen receptor. Journal of Immunology, 1994, 152, 2837-44.	0.8	22
186	Structural compartmentalization of MHC class II signaling function. Trends in Immunology, 1993, 14, 539-546.	7.5	71
187	The B-Cell Antigen Receptor: Structure and Function of Primary, Secondary, Tertiary and Quaternary Components. Immunological Reviews, 1993, 132, 85-106.	6.0	52
188	Mapping of sites on the Src family protein tyrosine kinases p55blk, p59fyn, and p56lyn which interact with the effector molecules phospholipase C-gamma 2, microtubule-associated protein kinase, GTPase-activating protein, and phosphatidylinositol 3-kinase Molecular and Cellular Biology, 1993, 13, 5877-5887.	2.3	157
189	Signaling-defective mutants of the B lymphocyte antigen receptor fail to associate with Ig-alpha and Ig-beta/gamma Journal of Biological Chemistry, 1993, 268, 25776-25779.	3.4	63
190	Mapping of Sites on the Src Family Protein Tyrosine Kinases p55 ^{<i>blk</i>} , p59 ^{<i>fyn</i>} , and p56 ^{<i>lyn</i>} Which Interact with the Effector Molecules Phospholipase C-γ2, Microtubule-Associated Protein Kinase, GTPase-Activating Protein, and Phosphatidylinositol 3-Kinase. Molecular and Cellular Biology, 1993, 13, 5877-5887.	2.3	61
191	Signaling-defective mutants of the B lymphocyte antigen receptor fail to associate with Ig-alpha and Ig-beta/gamma. Journal of Biological Chemistry, 1993, 268, 25776-9.	3.4	43
192	B cell antigen receptor cross-linking triggers rapid protein kinase C independent activation of p21ras1. Journal of Immunology, 1993, 151, 4513-22.	0.8	66
193	The gamma subunit of the B cell antigen-receptor complex is a C-terminally truncated product of the B29 gene. Journal of Immunology, 1993, 150, 2814-22.	0.8	24
194	The B cell antigen receptor complex: association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science, 1992, 258, 123-126.	12.6	304
195	Membrane immunoglobulin and its accomplices: new lessons from an old receptor 1. FASEB Journal, 1992, 6, 3207-3217.	0.5	87
196	Signal transduction by T- and B-cell antigen receptors: converging structures and concepts. Current Opinion in Immunology, 1992, 4, 257-264.	5.5	73
197	CD4 binding to major histocompatibility complex class II antigens induces LFA-1-dependent and -independent homotypic adhesion of B lymphocytes. European Journal of Immunology, 1992, 22, 147-152.	2.9	30
198	B-cell proliferation initiated by Ia cross-linking and sustained by interleukins leads to class switching but not somatic mutation in vitro. Immunology, 1992, 75, 116-21.	4.4	16

#	Article	IF	CITATIONS
199	Human pre-B and B cell membrane mu-chains are noncovalently associated with a disulfide-linked complex containing a product of the B29 gene. Journal of Immunology, 1992, 149, 2857-63.	0.8	19
200	Flow cytometric analysis of intracellular calcium: The polyclonal and antigen-specific response in human B lymphocytes. Methods, 1991, 2, 219-226.	3.8	4
201	Regulation of B cell antigen receptor signal transduction and phosphorylation by CD45. Science, 1991, 252, 1839-1842.	12.6	285
202	The B-cell antigen receptor complex. Trends in Immunology, 1991, 12, 196-201.	7.5	193
203	T-cell development and transmembrane signaling: changing biological responses through an unchanging receptor. Trends in Immunology, 1991, 12, 79-85.	7.5	122
204	Capturing antigen receptor components. Current Biology, 1991, 1, 25-27.	3.9	7
205	IgM antigen receptor complex contains phosphoprotein products of B29 and mb-1 genes Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3982-3986.	7.1	134
206	Modeling of T cell contact-dependent B cell activation. IL-4 and antigen receptor ligation primes quiescent B cells to mobilize calcium in response to la cross-linking. Journal of Immunology, 1991, 146, 2075-82.	0.8	53
207	Alpha-chains of IgM and IgD antigen receptor complexes are differentially N-glycosylated MB-1-related molecules. Journal of Immunology, 1991, 147, 1575-80.	0.8	50
208	Ligation of membrane Ig leads to calcium-mediated phosphorylation of the proto-oncogene product, Ets-1. Journal of Immunology, 1991, 146, 1743-9.	0.8	41
209	Improved method for measuring intracellular Ca++ with fluo-3. Cytometry, 1990, 11, 923-927.	1.8	93
210	Ligation of membrane immunoglobulin leads to inactivation of the signal-transducing ability of membrane immunoglobulin, CD19, CD21, and B-cell gp95 Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 8766-8770.	7.1	32
211	B lymphocyte antigen receptors (mIg) are non-covalently associated with a disulfide linked, inducibly phosphorylated glycoprotein complex. EMBO Journal, 1990, 9, 441-8.	7.8	71
212	Membrane IgM and IgD molecules fail to transduce Ca2+ mobilizing signals when expressed on differentiated B lineage cells. Journal of Immunology, 1990, 144, 3272-80.	0.8	51
213	Dual molecular mechanisms mediate ligand-induced membrane Ig desensitization. Journal of Immunology, 1990, 145, 13-9.	0.8	25
214	la-mediated signal transduction leads to proliferation of primed B lymphocytes Journal of Experimental Medicine, 1989, 170, 877-886.	8.5	111
215	The thymus has two functionally distinct populations of immature αβ+ T cells: One population is deleted by ligation of αβTCR. Cell, 1989, 58, 1047-1054.	28.9	142
216	Altered I-A protein-mediated transmembrane signaling in B cells that express truncated I-Ak protein Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6297-6301.	7.1	60

#	Article	IF	CITATIONS
217	Alpha beta T cell receptor and CD3 transduce different signals in immature T cells. Implications for selection and tolerance. Journal of Immunology, 1989, 142, 3006-12.	0.8	54
218	Production of multiple lymphokines by the A20.1 B cell lymphoma after cross-linking of membrane Ig by immobilized anti-Ig. Journal of Immunology, 1989, 143, 881-9.	0.8	25
219	Evaluation of methods for the isolation of plasma membranes displaying guanosine 5′-triphosphate-dependence for the regulation of adenylate cyclase activity: Potential application to the study of other guanosine 5′-triphosphate-dependent transduction systems. Analytical Biochemistry, 1988, 175, 177-190.	2.4	16
220	Membrane Events During Lymphocyte Activation. Handbook of Experimental Pharmacology, 1988, , 53-82.	1.8	1
221	Flow cytometric analysis of intracellular calcium mobilization. Methods in Enzymology, 1987, 141, 53-63.	1.0	10
222	Differential Transmembrane Signaling in B Lymphocyte Activation. Annals of the New York Academy of Sciences, 1987, 494, 52-63.	3.8	1
223	Molecular Mechanisms of Transmembrane Signaling in B Lymphocytes. Annual Review of Immunology, 1987, 5, 175-199.	21.8	291
224	Ia binding ligands and cAMP stimulate nuclear translocation of PKC in B lymphocytes. Nature, 1987, 327, 629-632.	27.8	316
225	Both immature and mature T cells mobilize Ca2+ in response to antigen receptor crosslinking. Nature, 1987, 330, 179-181.	27.8	90
226	Coupling of B Cell Surface Ig, Ia and BSF1 Receptors to Intracellular "Second Messengers― Advances in Experimental Medicine and Biology, 1987, 213, 195-205.	1.6	4
227	Transmembrane signaling through B cell MHC class II molecules: anti-la antibodies induce protein kinase C translocation to the nuclear fraction. Journal of Immunology, 1987, 138, 2345-52.	0.8	81
228	Immunology: Seeing the way to B-cell growth. Nature, 1986, 319, 620-620.	27.8	4
229	Single cell analysis of calcium mobilization in anti-immunoglobulin-stimulated B lymphocytes. Journal of Immunology, 1986, 136, 54-7.	0.8	43
230	Translocation of protein kinase C during membrane immunoglobulin-mediated transmembrane signaling in B lymphocytes. Journal of Immunology, 1986, 136, 2300-4.	0.8	111
231	Anti-lg induces release of inositol 1,4,5-trisphosphate, which mediates mobilization of intracellular Ca++ stores in B lymphocytes. Journal of Immunology, 1986, 137, 708-14.	0.8	91
232	The biochemical basis of transmembrane signalling by B lymphocyte surface immunoglobulin. Trends in Immunology, 1985, 6, 218-222.	7.5	70
233	Hyper-la antigen expression on B cells from mice correlates with manifestations of the autoimmune state. Clinical Immunology and Immunopathology, 1985, 34, 124-129.	2.0	12
234	Identification and characterization of a hapten-modifiable tepc 15 cross-reactive idiotype in swine. Molecular Immunology, 1985, 22, 1159-1168.	2.2	15

#	Article	IF	CITATIONS
235	B cell activation. VI. Effects of exogenous diglyceride and modulators of phospholipid metabolism suggest a central role for diacylglycerol generation in transmembrane signaling by mlg. Journal of Immunology, 1985, 134, 101-7.	0.8	49
236	Interleukin-induced increase in la expression by normal mouse B cells Journal of Experimental Medicine, 1984, 160, 679-694.	8.5	300
237	The major histocompatibility complex-restricted antigen receptor on T cells: Distribution on thymus and peripheral T cells. Cell, 1984, 38, 577-584.	28.9	211
238	B cell activation. VIII. Membrane immunoglobulins transduce signals via activation of phosphatidylinositol hydrolysis. Journal of Immunology, 1984, 133, 3382-6.	0.8	135
239	B cell activation. IV. Induction of cell membrane depolarization and hyper-I-A expression by phorbol diesters suggests a role for protein kinase C in murine B lymphocyte activation. Journal of Immunology, 1984, 132, 1472-8.	0.8	73
240	mlgM:mlgD ratios on B cells: mean mlgD expression exceeds mlgM by 10-fold on most splenic B cells. Journal of Immunology, 1984, 132, 1712-6.	0.8	37
241	B cell activation. V. Differentiation signaling of B cell membrane depolarization, increased I-A expression, C0 to G1 transition, and thymidine uptake by anti-IgM and anti-IgD antibodies. Journal of Immunology, 1984, 133, 576-81.	0.8	59
242	Sorting of B lymphoblasts based upon cell diameter provides cell populations enriched in different stages of cell cycle. Journal of Immunological Methods, 1983, 63, 45-56.	1.4	31
243	B cell activation. III. B cell plasma membrane depolarization and hyper-Ia antigen expression induced by receptor immunoglobulin cross-linking are coupled Journal of Experimental Medicine, 1983, 158, 1589-1599.	8.5	104
244	B cell activation. I. Anti-immunoglobulin-induced receptor cross-linking results in a decrease in the plasma membrane potential of murine B lymphocytes Journal of Experimental Medicine, 1983, 157, 2073-2086.	8.5	102
245	Level of mla expression on mitogen-stimulated murine B lymphocytes is dependent on position in cell cycle. Journal of Immunology, 1983, 130, 626-31.	0.8	62
246	CELL CYCLE DEPENDENCE FOR EXPRESSION OF MEMBRANE ASSOCIATED IgD, IgM AND Ia ANTIGEN ON MITOGEN-STIMULATED MURINE B-LYMPHOCYTES. Annals of the New York Academy of Sciences, 1982, 399, 238-254.	3.8	18
247	Identification of a brain theta-positive, secretory cell from hematopoietic tissues. Journal of Immunology, 1981, 127, 1685-91.	0.8	10
248	The Role of Receptor IgM and IgD in Determining Triggering and Induction of Tolerance in Murine B Cells1. Immunological Reviews, 1979, 43, 69-95.	6.0	48
249	B-cell tolerance. II. Trinitrophenyl human gamma globulin-induced tolerance in adult and neonatal murine B cells responsive to thymus- dependent and independent forms of the same hapten. Journal of Experimental Medicine, 1977, 145, 778-783.	8.5	70
250	Differential susceptibility of neonatal and adult murine spleen cells to in vitro induction of B-cell tolerance Journal of Experimental Medicine, 1976, 144, 293-297.	8.5	123
251	A Rapid Method for the Purification of Immunoglobulin M (IgM) from the Sera of Certain Mammalian Species. Preparative Biochemistry and Biotechnology, 1974, 4, 31-46.	0.5	40