
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6128343/publications.pdf Version: 2024-02-01

IENS H KUHN

#	Article	IF	CITATIONS
1	Sangivamycin is highly effective against SARS-CoV-2 in vitro and has favorable drug properties. JCI Insight, 2022, 7, .	2.3	12
2	Delayed viral clearance despite high number of activated T cells during the acute phase in Argentinean patients with hantavirus pulmonary syndrome. EBioMedicine, 2022, 75, 103765.	2.7	3
3	Differentiating between viruses and virus species by writing their names correctly. Archives of Virology, 2022, 167, 1231-1234.	0.9	33
4	Medical imaging of pulmonary disease in SARS-CoV-2-exposed non-human primates. Trends in Molecular Medicine, 2022, 28, 123-142.	3.5	10
5	<i>Jingchuvirales</i> : a New Taxonomical Framework for a Rapidly Expanding Order of Unusual Monjiviricete Viruses Broadly Distributed among Arthropod Subphyla. Applied and Environmental Microbiology, 2022, 88, AEM0195421.	1.4	16
6	Ebola virus persistence and disease recrudescence in the brains of antibody-treated nonhuman primate survivors. Science Translational Medicine, 2022, 14, eabi5229.	5.8	22
7	Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell, 2022, 185, 995-1007.e18.	13.5	26
8	Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome. Science, 2022, 376, 156-162.	6.0	124
9	History and classification of Aigai virus (formerly Crimean–Congo haemorrhagic fever virus genotype) Tj ETQq1	1_0,78431 1.3	.4 ₁ gBT /Ove
10	Duplex One-Step RT-qPCR Assays for Simultaneous Detection of Genomic and Subgenomic RNAs of SARS-CoV-2 Variants. Viruses, 2022, 14, 1066.	1.5	1
11	Diversity and ecological footprint of Global Ocean RNA viruses. Science, 2022, 376, 1202-1208.	6.0	41
12	Virus Taxonomy. , 2021, , 28-37.		16
13	An immunotoxin targeting Ebola virus glycoprotein inhibits Ebola virus production from infected cells. PLoS ONE, 2021, 16, e0245024.	1.1	4
14	A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nature Communications, 2021, 12, 763.	5.8	17
15	Increased Likelihood of Detecting Ebola Virus RNA in Semen by Using Sample Pelleting. Emerging Infectious Diseases, 2021, 27, 1239-1241.	2.0	1
16	Development and Characterization of a cDNA-Launch Recombinant Simian Hemorrhagic Fever Virus Expressing Enhanced Green Fluorescent Protein: ORF 2b' Is Not Required for In Vitro Virus Replication. Viruses, 2021, 13, 632.	1.5	5
17	A novel cripavirus of an ectoparasitoid wasp increases pupal duration and fecundity of the wasp's <i>Drosophila melanogaster</i> host. ISME Journal, 2021, 15, 3239-3257.	4.4	13
18	SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nature Microbiology, 2021, 6, 821-823.	5.9	221

#	Article	IF	CITATIONS
19	Epidemiology of Crimean-Congo Hemorrhagic Fever (CCHF) in Africa—Underestimated for Decades. American Journal of Tropical Medicine and Hygiene, 2021, 104, 1978-1990.	0.6	34
20	<i>Adnaviria</i> : a New Realm for Archaeal Filamentous Viruses with Linear A-Form Double-Stranded DNA Genomes. Journal of Virology, 2021, 95, e0067321.	1.5	22
21	Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Archives of Virology, 2021, 166, 2633-2648.	0.9	219
22	ICTV Virus Taxonomy Profile: Bornaviridae. Journal of General Virology, 2021, 102, .	1.3	24
23	Molecular analysis of the 2012 Bundibugyo virus disease outbreak. Cell Reports Medicine, 2021, 2, 100351.	3.3	4
24	Acute Late-Stage Myocarditis in the Crab-Eating Macaque Model of Hemorrhagic Smallpox. Viruses, 2021, 13, 1571.	1.5	3
25	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	0.9	62
26	Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiology and Molecular Biology Reviews, 2021, 85, e0019320.	2.9	53
27	A Novel Ebola Virus VP40 Matrix Protein-Based Screening for Identification of Novel Candidate Medical Countermeasures. Viruses, 2021, 13, 52.	1.5	14
28	On-Demand Patient-Specific Phenotype-to-Genotype Ebola Virus Characterization. Viruses, 2021, 13, 2010.	1.5	1
29	Leviviricetes: expanding and restructuring the taxonomy of bacteria-infecting single-stranded RNA viruses. Microbial Genomics, 2021, 7, .	1.0	18
30	ICTV Virus Taxonomy Profile: Nyamiviridae 2021. Journal of General Virology, 2021, 102, .	1.3	1
31	Perspective on taxonomic classification of uncultivated viruses. Current Opinion in Virology, 2021, 51, 207-215.	2.6	31
32	Novel Filoviruses, Hantavirus, and Rhabdovirus in Freshwater Fish, Switzerland, 2017. Emerging Infectious Diseases, 2021, 27, 3082-3091.	2.0	16
33	Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages. Systematic Biology, 2020, 69, 110-123.	2.7	89
34	Binomial nomenclature for virus species: a consultation. Archives of Virology, 2020, 165, 519-525.	0.9	51
35	Animal models for COVID-19. Nature, 2020, 586, 509-515.	13.7	705
36	Relatives of rubella virus in diverse mammals. Nature, 2020, 586, 424-428.	13.7	58

#	Article	IF	CITATIONS
37	"Super-Spreaders―and Person-to-Person Transmission of Andes Virus in Argentina. New England Journal of Medicine, 2020, 383, 2230-2241.	13.9	52
38	Novel Dihydroorotate Dehydrogenase Inhibitors with Potent Interferon-Independent Antiviral Activity against Mammarenaviruses In Vitro. Viruses, 2020, 12, 821.	1.5	10
39	Comparison of Multiplexed Immunofluorescence Imaging to Chromogenic Immunohistochemistry of Skin Biomarkers in Response to Monkeypox Virus Infection. Viruses, 2020, 12, 787.	1.5	23
40	Discovery of a Novel Simian Pegivirus in Common Marmosets (Callithrix jacchus) with Lymphocytic Enterocolitis. Microorganisms, 2020, 8, 1509.	1.6	3
41	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	0.9	184
42	A Model for the Production of Regulatory Grade Viral Hemorrhagic Fever Exposure Stocks: From Field Surveillance to Advanced Characterization of SFTSV. Viruses, 2020, 12, 958.	1.5	5
43	Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Archives of Virology, 2020, 165, 2737-2748.	0.9	202
44	Recent successes in therapeutics for Ebola virus disease: no time for complacency. Lancet Infectious Diseases, The, 2020, 20, e231-e237.	4.6	42
45	Discovery of Lanama Virus, a Distinct Member of Species Kunsagivirus C (Picornavirales:) Tj ETQq1 1 0.784314 i	rgBT_/Over	ocg 10 Tf 5
46	Viral genomics in Ebola virus research. Nature Reviews Microbiology, 2020, 18, 365-378.	13.6	30
47	Diversity, Transmission, and Cophylogeny of Ledanteviruses (Rhabdoviridae: Ledantevirus) and Nycteribiid Bat Flies Parasitizing Angolan Soft-Furred Fruit Bats in Bundibugyo District, Uganda. Microorganisms, 2020, 8, 750.	1.6	21
48	A Forgotten Episode of Marburg Virus Disease: Belgrade, Yugoslavia, 1967. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	32
49	A Lassa Virus Live-Attenuated Vaccine Candidate Based on Rearrangement of the Intergenic Region. MBio, 2020, 11, .	1.8	18
50	Human Tibroviruses: Commensals or Lethal Pathogens?. Viruses, 2020, 12, 252.	1.5	8
51	Global Organization and Proposed Megataxonomy of the Virus World. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	378
52	Wildlife surveillance for emergent disease. Nature Microbiology, 2020, 5, 885-886.	5.9	1
53	Ebola virus disease. Nature Reviews Disease Primers, 2020, 6, 13.	18.1	340
54	Reporter Assays for Ebola Virus Nucleoprotein Oligomerization, Virion-Like Particle Budding, and Minigenome Activity Reveal the Importance of Nucleoprotein Amino Acid Position 111. Viruses, 2020, 12, 105.	1.5	9

#	Article	IF	CITATIONS
55	Post-exposure prophylactic vaccine candidates for the treatment of human Risk Group 4 pathogen infections. Expert Review of Vaccines, 2020, 19, 85-103.	2.0	4
56	A Lassa Fever Live-Attenuated Vaccine Based on Codon Deoptimization of the Viral Glycoprotein Gene. MBio, 2020, 11, .	1.8	34
57	<i>Cressdnaviricota</i> : a Virus Phylum Unifying Seven Families of Rep-Encoding Viruses with Single-Stranded, Circular DNA Genomes. Journal of Virology, 2020, 94, .	1.5	118
58	The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nature Microbiology, 2020, 5, 668-674.	5.9	198
59	Challenges and Opportunities in the Use of High and Maximum Biocontainment Facilities in Developing and Licensing Risk Group 3 and Risk Group 4 Agent Veterinary Vaccines. ILAR Journal, 2020, 61, 46-61.	1.8	2
60	ICTV Virus Taxonomy Profile: Nairoviridae. Journal of General Virology, 2020, 101, 798-799.	1.3	56
61	Molecular detection of SARS-CoV-2 in formalin-fixed, paraffin-embedded specimens. JCI Insight, 2020, 5, .	2.3	80
62	The ReFRAME library as a comprehensive drug repurposing library to identify mammarenavirus inhibitors. Antiviral Research, 2019, 169, 104558.	1.9	30
63	Human, Nonhuman Primate, and Bat Cells Are Broadly Susceptible to Tibrovirus Particle Cell Entry. Frontiers in Microbiology, 2019, 10, 856.	1.5	8
64	Hantaviridae: Current Classification and Future Perspectives. Viruses, 2019, 11, 788.	1.5	94
65	Classify viruses — the gain is worth the pain. Nature, 2019, 566, 318-320.	13.7	104
66	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	0.9	70
67	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	0.9	115
68	Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses (October 2018). Archives of Virology, 2019, 164, 943-946.	0.9	102
69	Programmed â^'2/â^'1 Ribosomal Frameshifting in Simarteriviruses: an Evolutionarily Conserved Mechanism. Journal of Virology, 2019, 93, .	1.5	17
70	Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Archives of Virology, 2019, 164, 2417-2429.	0.9	257
71	Overview of Human Viral Hemorrhagic Fevers. , 2019, , 21-54.		1
72	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	0.9	285

#	Article	IF	CITATIONS
73	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	0.9	224
74	Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nature Biotechnology, 2019, 37, 632-639.	9.4	569
75	Medical countermeasures during the 2018 Ebola virus disease outbreak in the North Kivu and Ituri Provinces of the Democratic Republic of the Congo: a rapid genomic assessment. Lancet Infectious Diseases, The, 2019, 19, 648-657.	4.6	62
76	2018 Ebola virus disease outbreak in Équateur Province, Democratic Republic of the Congo: a retrospective genomic characterisation. Lancet Infectious Diseases, The, 2019, 19, 641-647.	4.6	27
77	Reply to Holmes and Duchêne, "Can Sequence Phylogenies Safely Infer the Origin of the Global Virome?― Deep Phylogenetic Analysis of RNA Viruses Is Highly Challenging but Not Meaningless. MBio, 2019, 10, .	1.8	18
78	Clinical Characterization of Host Response to Simian Hemorrhagic Fever Virus Infection in Permissive and Refractory Hosts: A Model for Determining Mechanisms of VHF Pathogenesis. Viruses, 2019, 11, 67.	1.5	3
79	New filovirus disease classification and nomenclature. Nature Reviews Microbiology, 2019, 17, 261-263.	13.6	84
80	Scalable, semi-automated fluorescence reduction neutralization assay for qualitative assessment of Ebola virus-neutralizing antibodies in human clinical samples. PLoS ONE, 2019, 14, e0221407.	1.1	11
81	EPS8 Facilitates Uncoating of Influenza A Virus. Cell Reports, 2019, 29, 2175-2183.e4.	2.9	29
82	Minimum Information about an Uncultivated Virus Genome (MIUViG). Nature Biotechnology, 2019, 37, 29-37.	9.4	414
83	Strengthening the Interaction of the Virology Community with the International Committee on Taxonomy of Viruses (ICTV) by Linking Virus Names and Their Abbreviations to Virus Species. Systematic Biology, 2019, 68, 828-839.	2.7	11
84	ICTV Virus Taxonomy Profile: Filoviridae. Journal of General Virology, 2019, 100, 911-912.	1.3	78
85	ICTV Virus Taxonomy Profile: Arenaviridae. Journal of General Virology, 2019, 100, 1200-1201.	1.3	66
86	Nipah virus persists in the brains of nonhuman primate survivors. JCI Insight, 2019, 4, .	2.3	21
87	An Emerging Biothreat: Crimean-Congo Hemorrhagic Fever Virus in Southern and Western Asia. American Journal of Tropical Medicine and Hygiene, 2019, 100, 16-23.	0.6	22
88	Innovative Technologies for Advancement of WHO Risk Group 4 Pathogens Research. , 2019, , 437-469.		5
89	ICTV Virus Taxonomy Profile: Artoviridae. Journal of General Virology, 2019, 100, 1202-1203.	1.3	1
90	Spumaretroviruses: Updated taxonomy and nomenclature. Virology, 2018, 516, 158-164.	1.1	50

#	Article	IF	CITATIONS
91	Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology, 2018, 163, 2295-2310.	0.9	157
92	Ortervirales: New Virus Order Unifying Five Families of Reverse-Transcribing Viruses. Journal of Virology, 2018, 92, .	1.5	79
93	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	0.9	153
94	Histology, immunohistochemistry, and in situ hybridization reveal overlooked Ebola virus target tissues in the Ebola virus disease guinea pig model. Scientific Reports, 2018, 8, 1250.	1.6	23
95	Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Archives of Virology, 2018, 163, 1125-1129.	0.9	172
96	A novel sheet-like virus particle array is a hallmark of Zika virus infection. Emerging Microbes and Infections, 2018, 7, 1-11.	3.0	13
97	Preliminary Classification of Novel Hemorrhagic Fever-Causing Viruses Using Sequence-Based PAirwise Sequence Comparison (PASC) Analysis. Methods in Molecular Biology, 2018, 1604, 43-53.	0.4	1
98	Retrovirus-Based Surrogate Systems for BSL-2 High-Throughput Screening of Antivirals Targeting BSL-3/4 Hemorrhagic Fever-Causing Viruses. Methods in Molecular Biology, 2018, 1604, 393-403.	0.4	1
99	Isolation and genetic characterization of encephalomyocarditis virus 1 from a deceased captive hamadryas baboon. Virus Research, 2018, 244, 164-172.	1.1	8
100	Ebola virus, but not Marburg virus, replicates efficiently and without required adaptation in snake cells. Virus Evolution, 2018, 4, vey034.	2.2	3
101	Subclinical Infection of Macaques and Baboons with A Baboon Simarterivirus. Viruses, 2018, 10, 701.	1.5	3
102	A fixed moderate-dose combination of tiletamine+zolazepam outperforms midazolam in induction of short-term immobilization of ball pythons (Python regius). PLoS ONE, 2018, 13, e0199339.	1.1	4
103	Recombinant Lassa Virus Expressing Green Fluorescent Protein as a Tool for High-Throughput Drug Screens and Neutralizing Antibody Assays. Viruses, 2018, 10, 655.	1.5	35
104	Persistence of Lassa Virus Associated With Severe Systemic Arteritis in Convalescing Guinea Pigs (Cavia porcellus). Journal of Infectious Diseases, 2018, 219, 1818-1822.	1.9	13
105	Origins and Evolution of the Global RNA Virome. MBio, 2018, 9, .	1.8	383
106	Editorial Overview. Current Opinion in Virology, 2018, 31, vi.	2.6	0
107	Persistent Marburg Virus Infection in the Testes of Nonhuman Primate Survivors. Cell Host and Microbe, 2018, 24, 405-416.e3.	5.1	55
108	Ebola Virus VP40 Modulates Cell Cycle and Biogenesis of Extracellular Vesicles. Journal of Infectious Diseases, 2018, 218, S365-S387.	1.9	40

#	Article	IF	CITATIONS
109	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018). Archives of Virology, 2018, 163, 2601-2631.	0.9	567
110	Expanding the Arterivirus Host Spectrum: Olivier's Shrew Virus 1, A Novel Arterivirus Discovered in African Giant Shrews. Scientific Reports, 2018, 8, 11171.	1.6	6
111	Interactome analysis of the lymphocytic choriomeningitis virus nucleoprotein in infected cells reveals ATPase Na+/K+ transporting subunit Alpha 1 and prohibitin as host-cell factors involved in the life cycle of mammarenaviruses. PLoS Pathogens, 2018, 14, e1006892.	2.1	34
112	Sequence of Reston Virus Isolate AZ-1435, an Ebolavirus Isolate Obtained during the 1989–1990 Reston Virus Epizootic in the United States. Genome Announcements, 2017, 5, .	0.8	3
113	Asymptomatic Ebola virus infections—myth or reality?. Lancet Infectious Diseases, The, 2017, 17, 570-571.	4.6	10
114	Candidate medical countermeasures targeting Ebola virus cell entry. Future Virology, 2017, 12, 119-140.	0.9	1
115	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	0.9	173
116	Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature, 2017, 544, 309-315.	13.7	346
117	50 years of the International Committee on Taxonomy of Viruses: progress and prospects. Archives of Virology, 2017, 162, 1441-1446.	0.9	72
118	Phylogenetic analysis of avian infectious bronchitis virus isolates from Morocco: a retrospective study (1983 to 2014). Virologica Sinica, 2017, 32, 155-158.	1.2	4
119	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Archives of Virology, 2017, 162, 2505-2538.	0.9	506
120	Within-Host Evolution of Simian Arteriviruses in Crab-Eating Macaques. Journal of Virology, 2017, 91, .	1.5	4
121	Ebola virus persistence as a new focus in clinical research. Current Opinion in Virology, 2017, 23, 43-48.	2.6	18
122	Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology, 2017, 15, 161-168.	13.6	590
123	Comparison of N - and O -linked glycosylation patterns of ebolavirus glycoproteins. Virology, 2017, 502, 39-47.	1.1	26
124	Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet, The, 2017, 390, 2662-2672.	6.3	80
125	Reverse Genetics of Filoviruses. Current Topics in Microbiology and Immunology, 2017, 411, 421-445.	0.7	7
126	Identification and pathological characterization of persistent asymptomatic Ebola virus infection in rhesus monkeys. Nature Microbiology, 2017, 2, 17113.	5.9	104

#	Article	IF	CITATIONS
127	Kanyawara Virus: A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies Infesting Previously Unknown Pteropodid Bats in Uganda. Scientific Reports, 2017, 7, 5287.	1.6	32
128	Production and Purification of Filovirus Glycoproteins in Insect and Mammalian Cell Lines. Scientific Reports, 2017, 7, 15091.	1.6	11
129	Taxonomy of prokaryotic viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee. Archives of Virology, 2017, 162, 1153-1157.	0.9	57
130	Genome Sequence of a Novel Kunsagivirus (<i>Picornaviridae</i> : <i>Kunsagivirus</i>) from a Wild Baboon (<i>Papio cynocephalus</i>). Genome Announcements, 2017, 5, .	0.8	2
131	Guide to the Correct Use of Filoviral Nomenclature. Current Topics in Microbiology and Immunology, 2017, 411, 447-460.	0.7	29
132	Beatrice Hill Virus Represents a Novel Species in the Genus Tibrovirus (Mononegavirales :) Tj ETQq0 0 0 rgBT /O	verlock 10 0.8	0 Tf 50 542 Td
133	Implementation of Objective PASC-Derived Taxon Demarcation Criteria for Official Classification of Filoviruses. Viruses, 2017, 9, 106.	1.5	22
134	A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host. PLoS Pathogens, 2017, 13, e1006201.	2.1	35
135	Complete Genome Coding Sequences of Artashat, Burana, Caspiy, Chim, Geran, Tamdy, and Uzun-Agach Viruses (Bunyavirales : Nairoviridae : Orthonairovirus). Genome Announcements, 2017, 5, .	0.8	9
136	ICTV Virus Taxonomy Profile: Nyamiviridae. Journal of General Virology, 2017, 98, 2914-2915.	1.3	5
137	Error baseline rates of five sample preparation methods used to characterize RNA virus populations. PLoS ONE, 2017, 12, e0171333.	1.1	21
138	Divergent Simian Arteriviruses Cause Simian Hemorrhagic Fever of Differing Severities in Macaques. MBio, 2016, 7, e02009-15.	1.8	14
139	Use of Unamplified RNA/cDNA–Hybrid Nanopore Sequencing for Rapid Detection and Characterization of RNA Viruses. Emerging Infectious Diseases, 2016, 22, 1448-1451.	2.0	36
140	Genomic Characterization of the Genus Nairovirus (Family Bunyaviridae). Viruses, 2016, 8, 164.	1.5	57
141	siRNA Screen Identifies Trafficking Host Factors that Modulate Alphavirus Infection. PLoS Pathogens, 2016, 12, e1005466.	2.1	30
142	Reduced evolutionary rate in reemerged Ebola virus transmission chains. Science Advances, 2016, 2, e1600378.	4.7	62
143	Comparison of respiratory inductive plethysmography versus head-out plethysmography for anesthetized nonhuman primates in an animal biosafety level 4 facility. Inhalation Toxicology, 2016, 28, 670-676.	0.8	8
144	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	0.9	407

#	Article	IF	CITATIONS
145	Arteriviruses, Pegiviruses, and Lentiviruses Are Common among Wild African Monkeys. Journal of Virology, 2016, 90, 6724-6737.	1.5	26
146	Ebola virus disease candidate vaccines under evaluation in clinical trials. Expert Review of Vaccines, 2016, 15, 1101-1112.	2.0	50
147	Overlooking the importance of immunoassays – Authors' reply. Lancet Infectious Diseases, The, 2016, 16, 1110.	4.6	0
148	A small stem-loop structure of the Ebola virus trailer is essential for replication and interacts with heat-shock protein A8. Nucleic Acids Research, 2016, 44, gkw825.	6.5	16
149	Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Archives of Virology, 2016, 161, 2921-2949.	0.9	263
150	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	2.7	17
151	Emerging technologies and bio-threats. , 2016, , 117-135.		1
152	Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 2. General Practices. Journal of Visualized Experiments, 2016, , .	0.2	6
153	Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures. Journal of Visualized Experiments, 2016, , .	0.2	16
154	Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 4. Medical Imaging Procedures. Journal of Visualized Experiments, 2016, , .	0.2	6
155	Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 3. Aerobiology. Journal of Visualized Experiments, 2016, , .	0.2	6
156	Neglected filoviruses. FEMS Microbiology Reviews, 2016, 40, 494-519.	3.9	106
157	Comparison of SYBR green I real-time RT-PCR with conventional agarose gel-based RT-PCR for the diagnosis of infectious bronchitis virus infection in chickens in Morocco. BMC Research Notes, 2016, 9, 231.	0.6	20
158	Essentials of filoviral load quantification. Lancet Infectious Diseases, The, 2016, 16, e134-e138.	4.6	13
159	Zoonotic Potential of Simian Arteriviruses. Journal of Virology, 2016, 90, 630-635.	1.5	48
160	Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Science Translational Medicine, 2016, 8, 326ra21.	5.8	102
161	Reorganization and expansion of the nidoviral family Arteriviridae. Archives of Virology, 2016, 161, 755-768.	0.9	254
162	Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Archives of Virology, 2016, 161, 1095-1099.	0.9	83

#	Article	IF	CITATIONS
163	A classification system for virophages and satellite viruses. Archives of Virology, 2016, 161, 233-247.	0.9	85
164	- Vascular Endothelium and Hemorrhagic Fever Viruses. , 2016, , 64-83.		7
165	Informing the Historical Record of Experimental Nonhuman Primate Infections with Ebola Virus: Genomic Characterization of USAMRIID Ebola Virus/H.sapiens-tc/COD/1995/Kikwit-9510621 Challenge Stock "R4368―and Its Replacement "R4415― PLoS ONE, 2016, 11, e0150919.	1.1	14
166	Specific Detection of Two Divergent Simian Arteriviruses Using RNAscope In Situ Hybridization. PLoS ONE, 2016, 11, e0151313.	1.1	7
167	Standard finishing categories for high-throughput sequencing of viral genomes. OIE Revue Scientifique Et Technique, 2016, 35, 43-52.	0.5	4
168	- Argentine Hemorrhagic Fever. , 2016, , 338-359.		0
169	- Interaction of the Host Immune System with Hemorrhagic Fever Viruses. , 2016, , 52-63.		Ο
170	- Hemorrhagic Fever with Renal Syndrome. , 2016, , 436-455.		81
171	- Receptor Determinants of Zoonosis and Pathogenesis of New World Hemorrhagic Fever Arenaviruses. , 2016, , 326-337.		1
172	Phylogenetic analysis of avian infectious bronchitis virus S1 glycoprotein regions reveals emergence of a new genotype in Moroccan broiler chicken flocks. Virology Journal, 2015, 12, 116.	1.4	14
173	Genetic and Phylogenetic Characterization of Tataguine and Witwatersrand Viruses and Other Orthobunyaviruses of the Anopheles A, Capim, GuamÃ _i , Koongol, Mapputta, Tete, and Turlock Serogroups. Viruses, 2015, 7, 5987-6008.	1.5	36
174	Monitoring of Ebola Virus Makona Evolution through Establishment of Advanced Genomic Capability in Liberia. Emerging Infectious Diseases, 2015, 21, 1135-1143.	2.0	79
175	Evaluation of the Potential Impact of Ebola Virus Genomic Drift on the Efficacy of Sequence-Based Candidate Therapeutics. MBio, 2015, 6, .	1.8	62
176	Past, present, and future of arenavirus taxonomy. Archives of Virology, 2015, 160, 1851-1874.	0.9	158
177	Evolution and Spread of Ebola Virus in Liberia, 2014–2015. Cell Host and Microbe, 2015, 18, 659-669.	5.1	87
178	Simian Hemorrhagic Fever Virus Cell Entry Is Dependent on CD163 and Uses a Clathrin-Mediated Endocytosis-Like Pathway. Journal of Virology, 2015, 89, 844-856.	1.5	38
179	Taxonomic reorganization of the family Bornaviridae. Archives of Virology, 2015, 160, 621-632.	0.9	97
180	Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone. Cell, 2015, 161, 1516-1526.	13.5	275

#	Article	IF	Citations
181	Generation and characterization of large-particle aerosols using a center flow tangential aerosol generator with a non-human-primate, head-only aerosol chamber. Inhalation Toxicology, 2015, 27, 247-253.	0.8	7
182	Middle East respiratory syndrome: obstacles and prospects for vaccine development. Expert Review of Vaccines, 2015, 14, 949-962.	2.0	27
183	Genome Sequence of Bivens Arm Virus, a Tibrovirus Belonging to the Species Tibrogargan virus () Tj ETQq1 1 0.78	4314 rgB1 0.8	[Overlock]
184	The Role of Viral Protein Phosphorylation During Filovirus Infection. , 2015, , 791-813.		0
185	Molecular Evidence of Sexual Transmission of Ebola Virus. New England Journal of Medicine, 2015, 373, 2448-2454.	13.9	380
186	Historical Outbreaks of Simian Hemorrhagic Fever in Captive Macaques Were Caused by Distinct Arteriviruses. Journal of Virology, 2015, 89, 8082-8087.	1.5	21
187	Emergence of Ebola Virus Escape Variants in Infected Nonhuman Primates Treated with the MB-003 Antibody Cocktail. Cell Reports, 2015, 12, 2111-2120.	2.9	68
188	Antiviral Potential of ERK/MAPK and PI3K/AKT/mTOR Signaling Modulation for Middle East Respiratory Syndrome Coronavirus Infection as Identified by Temporal Kinome Analysis. Antimicrobial Agents and Chemotherapy, 2015, 59, 1088-1099.	1.4	344
189	Family Bunyaviridae. , 2015, , 199-246.		5
190	Flaviviruses: Introduction to Dengue Viruses. , 2015, , 403-424.		2
191	Arenaviruses. , 2015, , 501-541.		1
192	Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. ELife, 2015, 4, .	2.8	110
193	Viral Hemorrhagic Fevers of Animals Caused by Negative-Strand RNA Viruses. , 2015, , 247-317.		0
194	Ebola Virus Disease. , 2015, , 543-559.		1
195	Viral Hemorrhagic Fevers of Animals Caused by Positive-Stranded RNA Viruses. , 2015, , 361-401.		0
196	Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Archives of Virology, 2014, 159, 1229-37.	0.9	59
197	High Genetic Diversity and Adaptive Potential of Two Simian Hemorrhagic Fever Viruses in a Wild Primate Population. PLoS ONE, 2014, 9, e90714.	1.1	36
198	Reidentification of Ebola Virus E718 and ME as Ebola Virus/H.sapiens-tc/COD/1976/Yambuku-Ecran. Genome Announcements, 2014, 2, .	0.8	22

#	Article	IF	CITATIONS
199	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	1.5	49
200	Nomenclature- and Database-Compatible Names for the Two Ebola Virus Variants that Emerged in Guinea and the Democratic Republic of the Congo in 2014. Viruses, 2014, 6, 4760-4799.	1.5	83
201	ABSL-4 Aerobiology Biosafety and Technology at the NIH/NIAID Integrated Research Facility at Fort Detrick. Viruses, 2014, 6, 137-150.	1.5	15
202	Genome Sequences of Simian Hemorrhagic Fever Virus Variant NIH LVR42-0/M6941 Isolates (Arteriviridae: Arterivirus). Genome Announcements, 2014, 2, .	0.8	9
203	Systems kinomics for characterizing host responses to high-consequence pathogens at the NIH/NIAID Integrated Research Facility-Frederick. Pathogens and Disease, 2014, 71, 190-198.	0.8	4
204	The NIAID Integrated Research Facility at Frederick, Maryland: a unique international resource to facilitate medical countermeasure development for BSL-4 pathogens. Pathogens and Disease, 2014, 71, 213-218.	0.8	19
205	Dichorhavirus: a proposed new genus for Brevipalpus mite-transmitted, nuclear, bacilliform, bipartite, negative-strand RNA plant viruses. Archives of Virology, 2014, 159, 607-619.	0.9	61
206	Discussions and decisions of the 2012–2014 International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group, January 2012–June 2013. Archives of Virology, 2014, 159, 821-830.	0.9	85
207	PCR-based assay to detect sheeppox virus in ocular, nasal, and rectal swabs from infected Moroccan sheep. Journal of Virological Methods, 2014, 204, 38-43.	1.0	8
208	Two Novel Simian Arteriviruses in Captive and Wild Baboons (Papio spp.). Journal of Virology, 2014, 88, 13231-13239.	1.5	28
209	Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann–Pick C1. Virology, 2014, 468-470, 637-646.	1.1	55
210	Influenza A Virus Polymerase Is a Site for Adaptive Changes during Experimental Evolution in Bat Cells. Journal of Virology, 2014, 88, 12572-12585.	1.5	28
211	Standards for Sequencing Viral Genomes in the Era of High-Throughput Sequencing. MBio, 2014, 5, e01360-14.	1.8	89
212	CD26/DPP4 Cell-Surface Expression in Bat Cells Correlates with Bat Cell Susceptibility to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection and Evolution of Persistent Infection. PLoS ONE, 2014, 9, e112060.	1.1	33
213	The International Code of Virus Classification and Nomenclature (ICVCN): proposal for text changes for improved differentiation of viral taxa and viruses. Archives of Virology, 2013, 158, 1621-1629.	0.9	8
214	Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 1425-1432.	0.9	54
215	Nyamiviridae: Proposal for a new family in the order Mononegavirales. Archives of Virology, 2013, 158, 2209-2226.	0.9	29
216	Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 301-311.	0.9	99

#	Article	IF	CITATIONS
217	Crimean–Congo hemorrhagic fever virus utilizes a clathrin- and early endosome-dependent entry pathway. Virology, 2013, 444, 45-54.	1.1	54
218	The International Code of Virus Classification and Nomenclature (ICVCN): proposal to delete Rule 3.41. Archives of Virology, 2013, 158, 297-299.	0.9	5
219	Nonhuman Transferrin Receptor 1 Is an Efficient Cell Entry Receptor for Ocozocoautla de Espinosa Virus. Journal of Virology, 2013, 87, 13930-13935.	1.5	5
220	Exceptional Simian Hemorrhagic Fever Virus Diversity in a Wild African Primate Community. Journal of Virology, 2013, 87, 688-691.	1.5	61
221	IFITM-2 and IFITM-3 but Not IFITM-1 Restrict Rift Valley Fever Virus. Journal of Virology, 2013, 87, 8451-8464.	1.5	109
222	Viral Hemorrhagic Fevers. , 2013, , 3-14.		5
223	General Disease Pathology in Filoviral and Arenaviral Infections. , 2013, , 15-30.		2
224	Filoviridae. , 2012, , 665-671.		4
225	Drug discovery technologies and strategies for Machupo virus and other New World arenaviruses. Expert Opinion on Drug Discovery, 2012, 7, 613-632.	2.5	20
226	Induction of ebolavirus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain. Virology Journal, 2012, 9, 32.	1.4	19
227	Ebola Virus Genome Plasticity as a Marker of Its Passaging History: A Comparison of In Vitro Passaging to Non-Human Primate Infection. PLoS ONE, 2012, 7, e50316.	1.1	44
228	13. United States Covert Biological Warfare Disinformation. , 2012, , 397-406.		0
229	11. Distinguishing between Offensive and Defensive Biological Warfare Activities. , 2012, , 323-342.		0
230	2. Beginnings of the "Modern―Soviet BW program, 1970– 1977. , 2012, , 51-78.		0
231	5. Soviet Civilian Sector Defenses against Biological Warfare and Infectious Diseases. , 2012, , 138-152.		0
232	16. Soviet Research on Mycotoxins. , 2012, , 450-457.		0
233	1. The Soviet Union's Biological Warfare Program, 1918– 1972. , 2012, , 16-50.		0
234	12. Assessments of Soviet Biological Warfare Activities by Western Intelligence Services. , 2012, , 343-396.		0

#	Article	IF	CITATIONS
235	6. Biopreparat's Role in the Soviet Biological Warfare Program and Its Survival in Russia. , 2012, , 153-176.		0
236	21. The Gorbachev Years: The Soviet Biological Weapons Program, 1985– 1992. , 2012, , 562-630.		0
237	Annex A: Acronyms and Russian Terms. , 2012, , 715-722.		Ο
238	14. Soviet Allegations of the Use of Biological Weapons by the United States. , 2012, , 407-422.		0
239	20. The Soviet Union, Russia, and Biological Warfare Arms Control. , 2012, , 523-561.		Ο
240	Annex B: Glossary of Biological Warfare-Related Words and Terms. , 2012, , 723-730.		0
241	3. USSR Ministry of Defense Facilities and its Biological Warfare Program. , 2012, , 79-120.		Ο
242	22. Boris Yeltsin to the Present. , 2012, , 631-678.		0
243	9. Biopreparat Facilities at Leningrad, Lyubuchany, and Stepnogorsk. , 2012, , 250-281.		Ο
244	4. Open-Air Testing of Biological Weapons by Aralsk-7 on Vozrozhdeniye Island. , 2012, , 121-137.		0
245	18. Th e Question of Proliferation from the USSR Biological Warfare Program. , 2012, , 476-506.		0
246	23. United States and International Efforts to Prevent Proliferation of Biological Weapons Expertise from the Former Soviet Union. , 2012, , 679-697.		0
247	Annex D: Joint US/UK/Rus sian Statement of Biological Weapons. , 2012, , 733-736.		Ο
248	10. Soviet Biological Weapons and Doctrines for Their Use. , 2012, , 282-322.		0
249	17. Assistance by Warsaw Pact States to the Soviet Union's Biological Warfare Program. , 2012, , 458-475.		Ο
250	Filovirus Infections. , 2011, , 483-491.		3
251	Machupo Virus Glycoprotein Determinants for Human Transferrin Receptor 1 Binding and Cell Entry. PLoS ONE, 2011, 6, e21398.	1.1	34
252	Development and characterization of rabbit and mouse antibodies against ebolavirus envelope glycoproteins. Journal of Virological Methods, 2011, 174, 99-109.	1.0	13

#	Article	IF	CITATIONS
253	Crimean-Congo hemorrhagic fever: Current and future prospects of vaccines and therapies. Antiviral Research, 2011, 90, 85-92.	1.9	91
254	Minigenomes, transcription and replication competent virus-like particles and beyond: Reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antiviral Research, 2011, 91, 195-208.	1.9	103
255	Evaluation of Perceived Threat Differences Posed by Filovirus Variants. Biosecurity and Bioterrorism, 2011, 9, 361-371.	1.2	68
256	Ebolavirus Δ-Peptide Immunoadhesins Inhibit Marburgvirus and Ebolavirus Cell Entry. Journal of Virology, 2011, 85, 8502-8513.	1.5	41
257	Inhibition of Ebola Virus Entry by a C-peptide Targeted to Endosomes. Journal of Biological Chemistry, 2011, 286, 15854-15861.	1.6	59
258	Ebola Virion Attachment and Entry into Human Macrophages Profoundly Effects Early Cellular Gene Expression. PLoS Neglected Tropical Diseases, 2011, 5, e1359.	1.3	79
259	Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus. PLoS Pathogens, 2011, 7, e1001258.	2.1	518
260	Clarification and guidance on the proper usage of virus and virus species names. Archives of Virology, 2010, 155, 445-453.	0.9	36
261	Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Archives of Virology, 2010, 155, 2083-2103.	0.9	407
262	A proposal to change existing virus species names to non-Latinized binomials. Archives of Virology, 2010, 155, 1909-1919.	0.9	29
263	Being obsessive-compulsive about terminology and nomenclature is not a vice, but a virtue. Bionomina, 2010, 1, 11-14.	0.2	5
264	Infectious Lassa Virus, but Not Filoviruses, Is Restricted by BST-2/Tetherin. Journal of Virology, 2010, 84, 10569-10580.	1.5	125
265	Filoviruses. , 2010, , 368-374.		1
266	The Primed Ebolavirus Glycoprotein (19-Kilodalton GP _{1,2}): Sequence and Residues Critical for Host Cell Binding. Journal of Virology, 2009, 83, 2883-2891.	1.5	140
267	Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2664-2669.	3.3	112
268	Filoviruses. A compendium of 40 years of epidemiological, clinical, and laboratory studies. Archives of Virology Supplementum, 2008, 20, 13-360.	3.0	141
269	Russian science: What the scientists say. Nature, 2007, 449, 528-530.	13.7	1
270	Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature, 2007, 446, 92-96.	13.7	374

#	Article	IF	CITATIONS
271	The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology, 2007, 367, 367-374.	1.1	145
272	Severe acute respiratory syndrome coronavirus entry as a target of antiviral therapies. Antiviral Therapy, 2007, 12, 639-50.	0.6	9
273	Severe Acute Respiratory Syndrome Coronavirus Entry as a Target of Antiviral Therapies. Antiviral Therapy, 2007, 12, 639-650.	0.6	17
274	Conserved Receptor-binding Domains of Lake Victoria Marburgvirus and Zaire Ebolavirus Bind a Common Receptor. Journal of Biological Chemistry, 2006, 281, 15951-15958.	1.6	115
275	Animal Origins of the Severe Acute Respiratory Syndrome Coronavirus: Insight from ACE2-S-Protein Interactions. Journal of Virology, 2006, 80, 4211-4219.	1.5	247
276	Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO Journal, 2005, 24, 1634-1643.	3.5	892
277	Retroviruses Pseudotyped with the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Efficiently Infect Cells Expressing Angiotensin-Converting Enzyme 2. Journal of Virology, 2004, 78, 10628-10635.	1.5	240
278	Genetic analysis of the M RNA segment of Crimean-Congo hemorrhagic fever virus strains involved in the recent outbreaks in Russia. Archives of Virology, 2004, 149, 2199-2213.	0.9	19
279	What's new in the renin-angiotensin system?. Cellular and Molecular Life Sciences, 2004, 61, 2738-2743.	2.4	197
280	Genetic variability of Crimean-Congo haemorrhagic fever virus in Russia and Central Asia. Journal of General Virology, 2003, 84, 1199-1206.	1.3	70
281	Sulfated Tyrosines Contribute to the Formation of the C5a Docking Site of the Human C5a Anaphylatoxin Receptor. Journal of Experimental Medicine, 2001, 193, 1059-1066.	4.2	83
282	HÃĦorrhagische Fieber aufgrund von Marburg- und Ebola-Viren. , 2001, , 309-321.		0
283	Filoviren als biologische Waffen - Bedrohung, Fakt oder Fiktion?. , 2001, , 299-307.		0
284	Stabilization of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trimers by Disulfide Bonds Introduced into the gp41 Glycoprotein Ectodomain. Journal of Virology, 1998, 72, 7620-7625.	1.5	70
285	Marburg virus disease. Postgraduate Medical Journal, 1973, 49, 542-546.	0.9	62
286	Infections Caused by Bornaviruses. , 0, , 1395-1407.		2
287	Biologische Waffen - eine neue Herausforderung an Diagnostik, Therapie, Klinik und Präention. , 0, , 981-983.		0