Jie Chao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6128232/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	ZC3H4 promotes pulmonary fibrosis via an ER stress-related positive feedback loop. Toxicology and Applied Pharmacology, 2022, 435, 115856.	2.8	4
2	Extracellular vesicleâ€mediated delivery of circDYM alleviates CUSâ€induced depressiveâ€like behaviours. Journal of Extracellular Vesicles, 2022, 11, e12185.	12.2	43
3	Development of fluorescence sensor and test paper based on molecularly imprinted carbon quantum dots for spiked detection of domoic acid in shellfish and lake water. Analytica Chimica Acta, 2022, 1197, 339515.	5.4	23
4	A missing piece of the puzzle in pulmonary fibrosis: anoikis resistance promotes fibroblast activation. Cell and Bioscience, 2022, 12, 21.	4.8	8
5	The Combined Effects of Circular RNA Methylation Promote Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 510-523.	2.9	13
6	Electrochemical/visual microfluidic detection with a covalent organic framework supported platinum nanozyme-based device for early diagnosis of pheochromocytoma. Biosensors and Bioelectronics, 2022, 207, 114208.	10.1	25
7	Role of circular RNAs in visceral organ fibrosis. Food and Chemical Toxicology, 2021, 150, 112074.	3.6	9
8	ZC3H4 mediates silica-induced EndoMT via ER stress and autophagy. Environmental Toxicology and Pharmacology, 2021, 84, 103605.	4.0	8
9	CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Molecular Psychiatry, 2020, 25, 1175-1190.	7.9	108
10	circDLPAG4/HECTD1 mediates ischaemia/reperfusion injury in endothelial cells via ER stress. RNA Biology, 2020, 17, 240-253.	3.1	36
11	MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H59-H71.	3.2	23
12	CT/MR Dual-Modality Imaging Tracking of Mesenchymal Stem Cells Labeled with a Au/GdNC@SiO ₂ Nanotracer in Pulmonary Fibrosis. ACS Applied Bio Materials, 2020, 3, 2489-2498.	4.6	5
13	CT/NIRF dual-modal imaging tracking and therapeutic efficacy of transplanted mesenchymal stem cells labeled with Au nanoparticles in silica-induced pulmonary fibrosis. Journal of Materials Chemistry B, 2020, 8, 1713-1727.	5.8	27
14	Co-localization of circDYM with miR-9 in microglia. Molecular Psychiatry, 2020, 25, 1155-1155.	7.9	1
15	SPIO nanoparticle-labeled bone marrow mesenchymal stem cells inhibit pulmonary EndoMT induced by SiO2. Experimental Cell Research, 2019, 383, 111492.	2.6	16
16	Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome, 2019, 7, 116.	11.1	169
17	CircRNA-012091/PPP1R13B–mediated Lung Fibrotic Response in Silicosis via Endoplasmic Reticulum Stress and Autophagy. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 380-391.	2.9	48
18	The emerging roles of a novel CCCH-type zinc finger protein, ZC3H4, in silica-induced epithelial to mesenchymal transition. Toxicology Letters, 2019, 307, 26-40.	0.8	32

#	Article	IF	CITATIONS
19	CircHECTD1 mediates pulmonary fibroblast activation <i>via</i> HECTD1. Therapeutic Advances in Chronic Disease, 2019, 10, 204062231989155.	2.5	25
20	Involvement of NLRP3 inflammasome in methamphetamine-induced microglial activation through miR-143/PUMA axis. Toxicology Letters, 2019, 301, 53-63.	0.8	25
21	The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy. Journal of Pharmacy and Pharmacology, 2019, 71, 338-347.	2.4	14
22	Role of PUMA in the methamphetamine-induced migration of microglia. Metabolic Brain Disease, 2019, 34, 61-69.	2.9	7
23	Circular RNA and its mechanisms in disease: From the bench to the clinic. , 2018, 187, 31-44.		596
24	MCPIP1-induced autophagy mediates ischemia/reperfusion injury in endothelial cells via HMGB1 and CaSR. Scientific Reports, 2018, 8, 1735.	3.3	12
25	Engagement of circular RNA <i>HECW2</i> in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy, 2018, 14, 404-418.	9.1	80
26	circHECTD1 promotes the silica-induced pulmonary endothelial–mesenchymal transition via HECTD1. Cell Death and Disease, 2018, 9, 396.	6.3	93
27	SiO2-induced release of sVEGFRs from pulmonary macrophages. Respiratory Physiology and Neurobiology, 2018, 247, 1-8.	1.6	2
28	Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood–Brain Barrier Integrity. Journal of Neuroscience, 2018, 38, 32-50.	3.6	306
29	Novel insight into circular RNA <i>HECTD1</i> in astrocyte activation via autophagy by targeting <i>MIR142</i> -TIPARP: implications for cerebral ischemic stroke. Autophagy, 2018, 14, 1164-1184.	9.1	276
30	Effect of methamphetamine on the fasting blood glucose in methamphetamine abusers. Metabolic Brain Disease, 2018, 33, 1585-1597.	2.9	13
31	Silicaâ€induced initiation of circular <i>ZC3H4</i> RNA/ZC3H4 pathway promotes the pulmonary macrophage activation. FASEB Journal, 2018, 32, 3264-3277.	0.5	83
32	circRNA Mediates Silica-Induced Macrophage Activation Via HECTD1/ZC3H12A-Dependent Ubiquitination. Theranostics, 2018, 8, 575-592.	10.0	107
33	BBC3 in macrophages promoted pulmonary fibrosis development through inducing autophagy during silicosis. Cell Death and Disease, 2017, 8, e2657-e2657.	6.3	61
34	Involvement of PUMA in pericyte migration induced by methamphetamine. Experimental Cell Research, 2017, 356, 28-39.	2.6	11
35	Acclimatization of the systemic microcirculation to alveolar hypoxia is mediated by an iNOS-dependent increase in nitric oxide availability. Journal of Applied Physiology, 2017, 123, 974-982.	2.5	3
36	Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Scientific Reports, 2017, 7, 11540.	3.3	35

#	Article	IF	CITATIONS
37	Repeated restraint stress increases seizure susceptibility by activation of hippocampal endoplasmic reticulum stress. Neurochemistry International, 2017, 110, 25-37.	3.8	24
38	AQP4â€knockout aggravation of isoprenalineâ€induced myocardial injury is mediated by p66Shc and endoplasmic reticulum stress. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 1106-1115.	1.9	7
39	Circular RNA <i>HIPK2</i> regulates astrocyte activation via cooperation of autophagy and ER stress by targeting <i>MIR124–2HG</i> . Autophagy, 2017, 13, 1722-1741.	9.1	222
40	circHIPK2-mediated σ-1R promotes endoplasmic reticulum stress in human pulmonary fibroblasts exposed to silica. Cell Death and Disease, 2017, 8, 3212.	6.3	43
41	An Increase of Sigma-1 Receptor in the Penumbra Neuron after Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 1981-1987.	1.6	14
42	Neuronal Nitric Oxide Synthase Contributes to PTZ Kindling-Induced Cognitive Impairment and Depressive-Like Behavior. Frontiers in Behavioral Neuroscience, 2017, 11, 203.	2.0	28
43	Neuronal Nitric Oxide Synthase Contributes to PTZ Kindling Epilepsy-Induced Hippocampal Endoplasmic Reticulum Stress and Oxidative Damage. Frontiers in Cellular Neuroscience, 2017, 11, 377.	3.7	66
44	Macrophage-derived MCPIP1 mediates silica-induced pulmonary fibrosis via autophagy. Particle and Fibre Toxicology, 2016, 13, 55.	6.2	81
45	<i>Mir143</i> -BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity. Autophagy, 2016, 12, 1538-1559.	9.1	49
46	Role of MCPIP1 in the Endothelial-Mesenchymal Transition Induced by Silica. Cellular Physiology and Biochemistry, 2016, 40, 309-325.	1.6	28
47	iNOS Induces Vascular Endothelial Cell Migration and Apoptosis Via Autophagy in Ischemia/Reperfusion Injury. Cellular Physiology and Biochemistry, 2016, 38, 1575-1588.	1.6	65
48	Neogambogic acid prevents silica-induced fibrosis via inhibition of high-mobility group box 1 and MCP-1-induced protein 1. Toxicology and Applied Pharmacology, 2016, 309, 129-140.	2.8	15
49	Silencing microRNA-143 protects the integrity of the blood-brain barrier: implications for methamphetamine abuse. Scientific Reports, 2016, 6, 35642.	3.3	58
50	IL-17 induces MIP-1α expression in primary mouse astrocytes via TRPC channel. Inflammopharmacology, 2016, 24, 33-42.	3.9	7
51	MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L121-L132.	2.9	24
52	Neuronal nitric oxide synthase contributes to pentylenetetrazole-kindling-induced hippocampal neurogenesis. Brain Research Bulletin, 2016, 121, 138-147.	3.0	23
53	MCPIP1 Regulates Alveolar Macrophage Apoptosis and Pulmonary Fibroblast Activation After <i>in vitro</i> Exposure to Silica. Toxicological Sciences, 2016, 151, 126-138.	3.1	34
54	NADPH oxidase activation is required for pentylenetetrazole kindling-induced hippocampal autophagy. Free Radical Biology and Medicine, 2016, 94, 230-242.	2.9	57

#	Article	IF	CITATIONS
55	p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis. Scientific Reports, 2015, 5, 16900.	3.3	27
56	The Role of MCPIP1 in Ischemia/Reperfusion Injury-Induced HUVEC Migration and Apoptosis. Cellular Physiology and Biochemistry, 2015, 37, 577-591.	1.6	36
57	Role of high-mobility group box 1 in methamphetamine-induced activation and migration of astrocytes. Journal of Neuroinflammation, 2015, 12, 156.	7.2	29
58	Pericytes Contribute to the Disruption of the Cerebral Endothelial Barrier via Increasing VEGF Expression: Implications for Stroke. PLoS ONE, 2015, 10, e0124362.	2.5	64
59	Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis. Toxicology and Applied Pharmacology, 2015, 288, 152-160.	2.8	35
60	NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress. Brain Research Bulletin, 2015, 114, 70-78.	3.0	74
61	Involvement of sigma-1 receptor in astrocyte activation induced by methamphetamine via up-regulation of its own expression. Journal of Neuroinflammation, 2015, 12, 29.	7.2	59
62	Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes. Nanoscale, 2015, 7, 18671-18676.	5.6	38
63	MCPIP1 Regulates Fibroblast Migration in 3-D Collagen Matrices Downstream of MAP Kinases and NF-κB. Journal of Investigative Dermatology, 2015, 135, 2944-2954.	0.7	15
64	MCPâ€1â€Induced Protein Promotes Human Pulmonary Fibroblast Migration Induced by SiO 2 via MAPKs and PI3K Signaling. FASEB Journal, 2015, 29, 411.9.	0.5	0
65	Expression of green fluorescent protein in human foreskin fibroblasts for use in <scp>2D</scp> and <scp>3D</scp> culture models. Wound Repair and Regeneration, 2014, 22, 134-140.	3.0	18
66	IL-17A Induces MIP-1α Expression in Primary Astrocytes via Src/MAPK/PI3K/NF-kB Pathways: Implications for Multiple Sclerosis. Journal of NeuroImmune Pharmacology, 2014, 9, 629-641.	4.1	44
67	Possible roles of astrocytes in estrogen neuroprotection during cerebral ischemia. Reviews in the Neurosciences, 2014, 25, 255-68.	2.9	25
68	Platelet-Derived Growth Factor-BB Restores HIV Tat -Mediated Impairment of Neurogenesis: Role of GSK-3β/β-Catenin. Journal of NeuroImmune Pharmacology, 2014, 9, 259-268.	4.1	23
69	Angiotensin type 2 receptors in the intermediolateral cell column of the spinal cord: Negative regulation of sympathetic nerve activity and blood pressure. International Journal of Cardiology, 2013, 168, 4046-4055.	1.7	14
70	Attachment-regulated signaling networks in the fibroblast-populated 3D collagen matrix. Scientific Reports, 2013, 3, 1880.	3.3	10
71	Involvement of miR-9/MCPIP1 axis in PDCF-BB-mediated neurogenesis in neuronal progenitor cells. Cell Death and Disease, 2013, 4, e960-e960.	6.3	29
72	Angiotensin II Increased Neuronal Stem Cell Proliferation: Role of AT2R. PLoS ONE, 2013, 8, e63488.	2.5	23

#	Article	IF	CITATIONS
73	Dexamethasone blocks the systemic inflammation of alveolar hypoxia at several sites in the inflammatory cascade. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H168-H177.	3.2	21
74	Ontogeny of angiotensin type 2 and type 1 receptor expression in mice. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2012, 13, 341-352.	1.7	29
75	Blunted Arterial Baroreflex Sensitivity: A Contributor to Hypertension in Angiotensin Type 2 Receptor Knockout Mice. FASEB Journal, 2012, 26, 893.7.	0.5	0
76	Imbalance of Angiotensin Receptor Expression and Function in the Spinal Cord: Potential Mechanism of Sympathetic Overactivity in CHF Rats. FASEB Journal, 2012, 26, 893.10.	0.5	0
77	Alveolar macrophages initiate the systemic microvascular inflammatory response to alveolar hypoxia. Respiratory Physiology and Neurobiology, 2011, 178, 439-448.	1.6	35
78	Monocyte Chemoattractant Protein–1 Released from Alveolar Macrophages Mediates the Systemic Inflammation of Acute Alveolar Hypoxia. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 53-61.	2.9	47
79	Activation of Central Angiotensin Type 2 Receptors Suppresses Norepinephrine Excretion and Blood Pressure in Conscious Rats. American Journal of Hypertension, 2011, 24, 724-730.	2.0	62
80	Renin released from mast cells activated by circulating MCP-1 initiates the microvascular phase of the systemic inflammation of alveolar hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2264-H2270.	3.2	20
81	Renin liberated from MCPâ€1/CCL2â€activated mast cells initiates the systemic inflammation of alveolar hypoxia. FASEB Journal, 2011, 25, 1110.12.	0.5	0
82	Monocyte Chemoattractant Proteinâ€1 (MCPâ€1) released from hypoxic alveolar macrophages activates systemic mast cells. FASEB Journal, 2010, 24, 990.17.	0.5	0
83	Monocyte Chemoattractant Proteinâ€1 (MCPâ€1) released from alveolar macrophages mediates the systemic inflammation of alveolar hypoxia. FASEB Journal, 2010, 24, 990.16.	0.5	0
84	The Systemic Inflammation of Alveolar Hypoxia Is Initiated by Alveolar Macrophage–Borne Mediator(s). American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 573-582.	2.9	47
85	Alveolar hypoxia, alveolar macrophages, and systemic inflammation. Respiratory Research, 2009, 10, 54.	3.6	29
86	The systemic inflammation of alveolar hypoxia is initiated by a circulating mediator(s) released from alveolar macrophages. FASEB Journal, 2009, 23, 762.22.	0.5	0
87	Renin from activated mast cells mediates the systemic inflammation of alveolar hypoxia. FASEB Journal, 2009, 23, 762.25.	0.5	0
88	Identification from diverse mammalian poxviruses of host-range regulatory genes functioning equivalently to vaccinia virus C7L. Virology, 2008, 372, 372-383.	2.4	53
89	NADPH oxidase mediates the mesenteric inflammation initiated by alveolar macrophages in alveolar hypoxia. FASEB Journal, 2008, 22, 731.1.	0.5	0