
Mariagrazia Pizza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6128134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complete Genome Sequence of <i>Neisseria meningitidis</i> Serogroup B Strain MC58. Science, 2000, 287, 1809-1815.	12.6	1,083
2	A universal vaccine for serogroup B meningococcus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10834-10839.	7.1	657
3	Vaccination against Neisseria meningitidis Using Three Variants of the Lipoprotein GNA1870. Journal of Experimental Medicine, 2003, 197, 789-799.	8.5	388
4	The Adjuvants Aluminum Hydroxide and MF59 Induce Monocyte and Granulocyte Chemoattractants and Enhance Monocyte Differentiation toward Dendritic Cells. Journal of Immunology, 2008, 180, 5402-5412.	0.8	370
5	NadA, a Novel Vaccine Candidate of Neisseria meningitidis. Journal of Experimental Medicine, 2002, 195, 1445-1454.	8.5	337
6	Mucosal Adjuvanticity and Immunogenicity of LTR72, a Novel Mutant of Escherichia coli Heat-labile Enterotoxin with Partial Knockout of ADP-ribosyltransferase Activity. Journal of Experimental Medicine, 1998, 187, 1123-1132.	8.5	270
7	Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Trends in Immunology, 1999, 20, 493-500.	7.5	270
8	Qualitative and quantitative assessment of meningococcal antigens to evaluate the potential strain coverage of protein-based vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19490-19495.	7.1	267
9	Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment. Lancet Infectious Diseases, The, 2013, 13, 416-425.	9.1	261
10	Vaccines, new opportunities for a new society. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12288-12293.	7.1	237
11	Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9072-9077.	7.1	222
12	Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Molecular Microbiology, 2004, 55, 687-698.	2.5	206
13	<i>Neisseria meningitidis</i> is structured in clades associated with restriction modification systems that modulate homologous recombination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4494-4499.	7.1	198
14	<i>Neisseria meningitidis</i> GNA2132, a heparin-binding protein that induces protective immunity in humans. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3770-3775.	7.1	184
15	Outer membrane vesicles from groupâ€BNeisseria meningitidis Δgna33 mutant: Proteomic and immunological comparison with detergent-derived outer membrane vesicles. Proteomics, 2006, 6, 1856-1866.	2.2	151
16	Adjuvanticity of the oil-in-water emulsion MF59 is independent of Nlrp3 inflammasome but requires the adaptor protein MyD88. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11169-11174.	7.1	149
17	Rational Design of a Meningococcal Antigen Inducing Broad Protective Immunity. Science Translational Medicine, 2011, 3, 91ra62.	12.4	135
18	Transcriptome Analysis of Neisseria meningitidis in Human Whole Blood and Mutagenesis Studies Identify Virulence Factors Involved in Blood Survival, PLoS Pathogens, 2011, 7, e1002027	4.7	129

#	Article	IF	CITATIONS
19	NadA Diversity and Carriage in Neisseria meningitidis. Infection and Immunity, 2004, 72, 4217-4223.	2.2	127
20	Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3304-3309.	7.1	125
21	Bactericidal antibody against a representative epidemiological meningococcal serogroup B panel confirms that MATS underestimates 4CMenB vaccine strain coverage. Vaccine, 2013, 31, 4968-4974.	3.8	123
22	Dual RNA-seq of Nontypeable Haemophilus influenzae and Host Cell Transcriptomes Reveals Novel Insights into Host-Pathogen Cross Talk. MBio, 2015, 6, e01765-15.	4.1	123
23	Proteomics Characterization of Outer Membrane Vesicles from the Extraintestinal Pathogenic Escherichia coli ΔtolR IHE3034 Mutant. Molecular and Cellular Proteomics, 2008, 7, 473-485.	3.8	115
24	Distribution and genetic variability of three vaccine components in a panel of strains representative of the diversity of serogroup B meningococcus. Vaccine, 2009, 27, 2794-2803.	3.8	111
25	Two years into reverse vaccinology. Vaccine, 2003, 21, 605-610.	3.8	109
26	Ng-MIP, a surface-exposed lipoprotein ofNeisseria gonorrhoeae, has a peptidyl-prolylcis/transisomerase (PPIase) activity and is involved in persistence in macrophages. Molecular Microbiology, 2005, 58, 669-681.	2.5	107
27	Genome sequencing of disease and carriage isolates of nontypeable <i>Haemophilus influenzae</i> identifies discrete population structure. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5439-5444.	7.1	104
28	Neisseria meningitidis: pathogenesis and immunity. Current Opinion in Microbiology, 2015, 23, 68-72.	5.1	104
29	Mutants of the Escherichia coli heat-labile enterotoxin as safe and strong adjuvants for intranasal delivery of vaccines. Expert Review of Vaccines, 2003, 2, 285-293.	4.4	103
30	Modulation of Innate and Acquired Immune Responses byEscherichia coliHeat-Labile Toxin: Distinct Pro- and Anti-Inflammatory Effects of the Nontoxic AB Complex and the Enzyme Activity. Journal of Immunology, 2000, 165, 5750-5759.	0.8	101
31	Prevalence and genetic diversity of candidate vaccine antigens among invasive Neisseria meningitidis isolates in the United States. Vaccine, 2011, 29, 4739-4744.	3.8	98
32	Characterization <i>of fHbp</i> , <i>nhba</i> (<i>gna2132</i>), <i>nadA</i> , <i>porA</i> , and Sequence Type in Group B Meningococcal Case Isolates Collected in England and Wales during January 2008 and Potential Coverage of an Investigational Group B Meningococcal Vaccine. Vaccine Journal, 2010, 17, 919-929.	3.1	95
33	Neisseria meningitidis App, a new adhesin with autocatalytic serine protease activity. Molecular Microbiology, 2003, 48, 323-334.	2.5	94
34	<i>Escherichia coli</i> Heat-Labile Enterotoxin Promotes Protective Th17 Responses against Infection by Driving Innate IL-1 and IL-23 Production. Journal of Immunology, 2011, 186, 5896-5906.	0.8	94
35	The Development of a Vaccine Against Meningococcus B Using Reverse Vaccinology. Frontiers in Immunology, 2019, 10, 751.	4.8	94
36	FdeC, a Novel Broadly Conserved Escherichia coli Adhesin Eliciting Protection against Urinary Tract Infections. MBio, 2012, 3, .	4.1	93

#	Article	IF	CITATIONS
37	Could the multicomponent meningococcal serogroup B vaccine (4CMenB) control Neisseria meningitidis capsular group X outbreaks in Africa?. Vaccine, 2013, 31, 1113-1116.	3.8	93
38	Effectiveness of Meningococcal B Vaccine against Endemic Hypervirulent <i>Neisseriameningitidis</i> W Strain, England. Emerging Infectious Diseases, 2016, 22, 309-311.	4.3	89
39	The Region Comprising Amino Acids 100 to 255 of Neisseria meningitidis Lipoprotein GNA 1870 Elicits Bactericidal Antibodies. Infection and Immunity, 2005, 73, 1151-1160.	2.2	88
40	Mutants of <i>Escherichia coli</i> Heat-Labile Toxin Act as Effective Mucosal Adjuvants for Nasal Delivery of an Acellular Pertussis Vaccine: Differential Effects of the Nontoxic AB Complex and Enzyme Activity on Th1 and Th2 Cells. Infection and Immunity, 1999, 67, 6270-6280.	2.2	88
41	Neisseria meningitidis NhhA is a multifunctional trimeric autotransporter adhesin. Molecular Microbiology, 2006, 61, 631-644.	2.5	82
42	Vaccines against Meningococcal Diseases. Microorganisms, 2020, 8, 1521.	3.6	82
43	Measuring antigen-specific bactericidal responses to a multicomponent vaccine against serogroup B meningococcus. Vaccine, 2010, 28, 5023-5030.	3.8	79
44	Vaccines Against Antimicrobial Resistance. Frontiers in Immunology, 2020, 11, 1048.	4.8	76
45	Expression of factor H binding protein in meningococcal strains can vary at least 15-fold and is genetically determined. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2714-2719.	7.1	73
46	Putative Vaccine Antigens fromNeisseria meningitidisRecognized by Serum Antibodies of Young Children Convalescing after Meningococcal Disease. Journal of Infectious Diseases, 2004, 190, 1488-1497.	4.0	72
47	Characterization of <i>fHbp</i> , <i>nhba</i> (<i>gna2132</i>), <i>nadA</i> , <i>porA</i> , Sequence Type (ST), and Genomic Presence of IS <i>1301</i> in Group B Meningococcal ST269 Clonal Complex Isolates from England and Wales. Journal of Clinical Microbiology, 2009, 47, 3577-3585.	3.9	71
48	Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development. Frontiers in Microbiology, 2018, 9, 440.	3.5	71
49	Genetically Detoxified Mutants of Heat-Labile Toxin from <i>Escherichia coli</i> Are Able To Act as Oral Adjuvants. Infection and Immunity, 1999, 67, 4400-4406.	2.2	70
50	Characterization of Diverse Subvariants of the Meningococcal Factor H (fH) Binding Protein for Their Ability To Bind fH, To Mediate Serum Resistance, and To Induce Bactericidal Antibodies. Infection and Immunity, 2011, 79, 970-981.	2.2	64
51	Vaccinology in the postâ^'COVID-19 era. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	62
52	Structure of the meningococcal vaccine antigen NadA and epitope mapping of a bactericidal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17128-17133.	7.1	60
53	Meningococcal serogroup B strain coverage of the multicomponent 4CMenB vaccine with corresponding regional distribution and clinical characteristics in England, Wales, and Northern Ireland, 2007–08 and 2014–15: a qualitative and quantitative assessment. Lancet Infectious Diseases, The. 2017. 17. 754-762.	9.1	60
54	Meningococcal B vaccine (4CMenB): the journey from research to real world experience. Expert Review of Vaccines, 2018, 17, 1111-1121.	4.4	60

#	Article	IF	CITATIONS
55	Interlaboratory Standardization of the Sandwich Enzyme-Linked Immunosorbent Assay Designed for MATS, a Rapid, Reproducible Method for Estimating the Strain Coverage of Investigational Vaccines. Vaccine Journal, 2012, 19, 1609-1617.	3.1	59
56	Meningococcal protein antigens and vaccines. Vaccine, 2009, 27, B42-B50.	3.8	56
57	Solution Structure of the Factor H-binding Protein, a Survival Factor and Protective Antigen of Neisseria meningitidis. Journal of Biological Chemistry, 2009, 284, 9022-9026.	3.4	55
58	Pathogenic E. coli Exploits SslE Mucinase Activity to Translocate through the Mucosal Barrier and Get Access to Host Cells. PLoS ONE, 2015, 10, e0117486.	2.5	55
59	Neisseria Adhesin A Variation and Revised Nomenclature Scheme. Vaccine Journal, 2014, 21, 966-971.	3.1	54
60	SslE Elicits Functional Antibodies That Impair In Vitro Mucinase Activity and In Vivo Colonization by Both Intestinal and Extraintestinal Escherichia coli Strains. PLoS Pathogens, 2014, 10, e1004124.	4.7	54
61	Emerging experience with meningococcal serogroup B protein vaccines. Expert Review of Vaccines, 2017, 16, 433-451.	4.4	54
62	Identification of <i>Neisseria meningitidis</i> Nonlipopolysaccharide Ligands for Class A Macrophage Scavenger Receptor by Using a Novel Assay. Infection and Immunity, 2006, 74, 5191-5199.	2.2	53
63	Transcriptional Regulation of the <i>nadA</i> Gene in Neisseria meningitidis Impacts the Prediction of Coverage of a Multicomponent Meningococcal Serogroup B Vaccine. Infection and Immunity, 2013, 81, 560-569.	2.2	52
64	Conservation of Meningococcal Antigens in the Genus <i>Neisseria</i> . MBio, 2013, 4, e00163-13.	4.1	50
65	Influence of sequence variability on bactericidal activity sera induced by Factor H binding protein variant 1.1. Vaccine, 2011, 29, 1072-1081.	3.8	47
66	An Analysis of the Sequence Variability of Meningococcal fHbp, NadA and NHBA over a 50-Year Period in the Netherlands. PLoS ONE, 2013, 8, e65043.	2.5	47
67	Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and protective immunity in a mouse model. Vaccine, 2017, 35, 5256-5263.	3.8	46
68	Epitope Mapping of a Bactericidal Monoclonal Antibody against the Factor H Binding Protein of Neisseria meningitidis. Journal of Molecular Biology, 2009, 386, 97-108.	4.2	44
69	The Two Variants of the <i>Streptococcus pneumoniae</i> Pilus 1 RrgA Adhesin Retain the Same Function and Elicit Cross-Protection <i>In Vivo</i> . Infection and Immunity, 2010, 78, 5033-5042.	2.2	42
70	LytM Proteins Play a Crucial Role in Cell Separation, Outer Membrane Composition, and Pathogenesis in Nontypeable Haemophilus influenzae. MBio, 2015, 6, e02575.	4.1	42
71	Molecular and Serological Diversity of Neisseria meningitidis Carrier Strains Isolated from Italian Students Aged 14 to 22 Years. Journal of Clinical Microbiology, 2014, 52, 1901-1910.	3.9	40
72	RrgB321, a Fusion Protein of the Three Variants of the Pneumococcal Pilus Backbone RrgB, Is Protectiveln Vivoand Elicits Opsonic Antibodies. Infection and Immunity, 2012, 80, 451-460.	2.2	39

#	Article	IF	CITATIONS
73	SR-A, MARCO and TLRs Differentially Recognise Selected Surface Proteins from <i> Neisseria meningitidis</i> : an Example of Fine Specificity in Microbial Ligand Recognition by Innate Immune Receptors. Journal of Innate Immunity, 2009, 1, 153-163.	3.8	38
74	Protective Efficacy Induced by Recombinant Clostridium difficile Toxin Fragments. Infection and Immunity, 2013, 81, 2851-2860.	2.2	38
75	Outer Membrane Vesicles (OMV)-based and Proteomics-driven Antigen Selection Identifies Novel Factors Contributing to Bordetella pertussis Adhesion to Epithelial Cells. Molecular and Cellular Proteomics, 2018, 17, 205-215.	3.8	38
76	Genetically detoxified pertussis toxin (PT-9K/129G): implications for immunization and vaccines. Expert Review of Vaccines, 2014, 13, 1191-1204.	4.4	36
77	HadA is an atypical new multifunctional trimeric coiled-coil adhesin ofHaemophilus influenzaebiogroupaegyptius, which promotes entry into host cells. Cellular Microbiology, 2009, 11, 1044-1063.	2.1	35
78	MF59 oil-in-water emulsion in combination with a synthetic TLR4 agonist (E6020) is a potent adjuvant for a combination Meningococcus vaccine. Human Vaccines and Immunotherapeutics, 2012, 8, 486-490.	3.3	34
79	Two crossâ€reactive monoclonal antibodies recognize overlapping epitopes on <i>Neisseria meningitidis</i> factor H binding protein but have different functional properties. FASEB Journal, 2014, 28, 1644-1653.	0.5	34
80	Molecular determinants of surface colonisation in diarrhoeagenic <i>Escherichia coli</i> (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiology Reviews, 2020, 44, 314-350.	8.6	34
81	Influence of serogroup B meningococcal vaccine antigens on growth and survival of the meningococcus in vitro and in ex vivo and in vivo models of infection. Vaccine, 2010, 28, 2416-2427.	3.8	33
82	Structure of the C-terminal Domain of Neisseria Heparin Binding Antigen (NHBA), One of the Main Antigens of a Novel Vaccine against Neisseria meningitidis. Journal of Biological Chemistry, 2011, 286, 41767-41775.	3.4	33
83	Neisserial Heparin Binding Antigen (NHBA) Contributes to the Adhesion of Neisseria meningitidis to Human Epithelial Cells. PLoS ONE, 2016, 11, e0162878.	2.5	33
84	Escherichia coli: Great Diversity around a Common Core. MBio, 2012, 3, .	4.1	31
85	Novel meningococcal 4 <scp>CM</scp> enB vaccine antigens – prevalence and polymorphisms of the encoding genes in <i>Neisseria gonorrhoeae</i> . Apmis, 2012, 120, 750-760.	2.0	31
86	Recognition of Neisseria meningitidis by the Long Pentraxin PTX3 and Its Role as an Endogenous Adjuvant. PLoS ONE, 2015, 10, e0120807.	2.5	29
87	Early clinical experience with a candidate meningococcal B recombinant vaccine (rMenB) in healthy adults. Hum Vaccin, 2011, 7, 781-791.	2.4	28
88	Human heat shock protein (Hsp) 90 interferes with Neisseria meningitidis adhesin A (NadA)-mediated adhesion and invasion. Cellular Microbiology, 2012, 14, 368-385.	2.1	28
89	Recent advances in meningococcal B disease prevention: real-world evidence from 4CMenB vaccination. Journal of Infection, 2021, 83, 17-26.	3.3	26
90	Methods to evaluate serogroup B meningococcal vaccines: From predictions to real-world evidence. Journal of Infection, 2020, 81, 862-872.	3.3	25

#	Article	IF	CITATIONS
91	Multicomponent meningococcal serogroup B vaccination elicits cross-reactive immunity in infants against genetically diverse serogroup C, W and Y invasive disease isolates. Vaccine, 2020, 38, 7542-7550.	3.8	25
92	Exploring host-pathogen interactions through genome wide protein microarray analysis. Scientific Reports, 2016, 6, 27996.	3.3	24
93	Vaccines Against Escherichia coli. Current Topics in Microbiology and Immunology, 2018, 416, 213-242.	1.1	24
94	Molecular Basis of Ligand-Dependent Regulation of NadR, the Transcriptional Repressor of Meningococcal Virulence Factor NadA. PLoS Pathogens, 2016, 12, e1005557.	4.7	24
95	Looking beyond meningococcal B with the 4CMenB vaccine: the Neisseria effect. Npj Vaccines, 2021, 6, 130.	6.0	24
96	Factor H-binding protein, a unique meningococcal vaccine antigen. Vaccine, 2008, 26, 146-148.	3.8	22
97	Toward a Meningitis-Free World. Science Translational Medicine, 2012, 4, 123ps5.	12.4	22
98	Antigen Identification Starting from the Genome: A "Reverse Vaccinology―Approach Applied to MenB. Methods in Molecular Biology, 2012, 799, 361-403.	0.9	22
99	EsiB, a Novel Pathogenic Escherichia coli Secretory Immunoglobulin A-Binding Protein Impairing Neutrophil Activation. MBio, 2013, 4, .	4.1	22
100	The C2 fragment from <i>Neisseria meningitidis</i> antigen NHBA increases endothelial permeability by destabilizing adherens junctions. Cellular Microbiology, 2014, 16, 925-937.	2.1	21
101	Vaccines to Overcome Antibiotic Resistance: The Challenge of Burkholderia cenocepacia. Trends in Microbiology, 2020, 28, 315-326.	7.7	21
102	<i>Neisseria meningitidis</i> subverts the polarized organization and intracellular trafficking of host cells to cross the epithelial barrier. Cellular Microbiology, 2015, 17, 1365-1375.	2.1	20
103	NadA3 Structures Reveal Undecad Coiled Coils and LOX1 Binding Regions Competed by Meningococcus B Vaccine-Elicited Human Antibodies. MBio, 2018, 9, .	4.1	19
104	Crystal structure reveals vaccine elicited bactericidal human antibody targeting a conserved epitope on meningococcal fHbp. Nature Communications, 2018, 9, 528.	12.8	18
105	The Factor H Binding Protein of <i>Neisseria meningitidis</i> Interacts with Xenosiderophores in Vitro. Biochemistry, 2012, 51, 9384-9393.	2.5	17
106	Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Portugal. PLoS ONE, 2017, 12, e0176177.	2.5	17
107	Identification of the Autochaperone Domain in the Type Va Secretion System (T5aSS): Prevalent Feature of Autotransporters with a β-Helical Passenger. Frontiers in Microbiology, 2017, 8, 2607.	3.5	17
108	4CMenB Immunization Induces Serum Bactericidal Antibodies Against Non-SerogroupÂB Meningococcal Strains in Adolescents. Infectious Diseases and Therapy, 2021, 10, 307-316.	4.0	17

#	Article	IF	CITATIONS
109	Structural and Biochemical Characterization of NarE, an Iron-containing ADP-ribosyltransferase from Neisseria meningitidis. Journal of Biological Chemistry, 2011, 286, 14842-14851.	3.4	16
110	Role of ARF6, Rab11 and External Hsp90 in the Trafficking and Recycling of Recombinant-Soluble Neisseria meningitidis Adhesin A (rNadA) in Human Epithelial Cells. PLoS ONE, 2014, 9, e110047.	2.5	16
111	Recombinant BCG Expressing LTAK63 Adjuvant induces Superior Protection against Mycobacterium tuberculosis. Scientific Reports, 2017, 7, 2109.	3.3	16
112	Diversity of cwp loci in clinical isolates of Clostridium difficile. Journal of Medical Microbiology, 2013, 62, 1444-1452.	1.8	16
113	The potential of adjuvants to improve immune responses against TdaP vaccines: A preclinical evaluation of MF59 and monophosphoryl lipid A. International Journal of Pharmaceutics, 2015, 492, 169-176.	5.2	15
114	Meningococcal factor H binding protein as immune evasion factor and vaccine antigen. FEBS Letters, 2020, 594, 2657-2669.	2.8	14
115	The trillion dollar vaccine gap. Science Translational Medicine, 2022, 14, eabn4342.	12.4	14
116	Vaccines 2020: The era of the digital vaccine is here. Science Translational Medicine, 2021, 13, eabm3249.	12.4	13
117	Evaluation of strain coverage of the multicomponent meningococcal serogroup B vaccine (4CMenB) administered in infants according to different immunisation schedules. Human Vaccines and Immunotherapeutics, 2019, 15, 725-731.	3.3	12
118	Development of a serological assay to predict antibody bactericidal activity against non-typeable Haemophilus influenzae. BMC Microbiology, 2015, 15, 87.	3.3	11
119	Mixed mucosal-parenteral immunizations with the broadly conserved pathogenic Escherichia coli antigen SslE induce a robust mucosal and systemic immunity without affecting the murine intestinal microbiota. Vaccine, 2019, 37, 314-324.	3.8	11
120	A novel high-throughput assay to quantify the vaccine-induced inhibition of Bordetella pertussis adhesion to airway epithelia. BMC Microbiology, 2016, 16, 215.	3.3	10
121	Exploiting chimeric human antibodies to characterize a protective epitope of <i>Neisseria</i> adhesin A, one of the Bexsero vaccine components. FASEB Journal, 2016, 30, 93-101.	0.5	10
122	A Naturally Occurring Single-Residue Mutation in the Translocator Domain of Neisseria meningitidis NhhA Affects Trimerization, Surface Localization, and Adhesive Capabilities. Infection and Immunity, 2011, 79, 4308-4321.	2.2	9
123	Variability of genes encoding surface proteins used as vaccine antigens in meningococcal endemic and epidemic strain panels from Norway. Vaccine, 2014, 32, 2722-2731.	3.8	9
124	Synergistic activity of antibodies in the multicomponent 4CMenB vaccine. Expert Review of Vaccines, 2022, 21, 645-658.	4.4	9
125	Molecular Engineering of Ghfp, the Gonococcal Orthologue of Neisseria meningitidis Factor H Binding Protein. Vaccine Journal, 2015, 22, 769-777.	3.1	8
126	A phase I, randomized, controlled, dose-ranging study of investigational acellular pertussis (aP) and reduced tetanus-diphtheria-acellular pertussis (TdaP) booster vaccines in adults. Human Vaccines and Immunotherapeutics, 2018, 14, 45-58.	3.3	8

#	Article	IF	CITATIONS
127	NHBA is processed by kallikrein from human saliva. PLoS ONE, 2019, 14, e0203234.	2.5	8
128	Neisseria gonorrhoeae PIII has a role on NG1873 outer membrane localization and is involved in bacterial adhesion to human cervical and urethral epithelial cells. BMC Microbiology, 2013, 13, 251.	3.3	7
129	Does vaccination with 4CMenB convey protection against meningococcal serogroup B strains not predicted to be covered by MATS? A study of the UK clonal complex cc269. Human Vaccines and immunotherapeutics, 2020, 16, 945-948.	3.3	7
130	High coverage of diverse invasive meningococcal serogroup B strains by the 4-component vaccine 4CMenB in Australia, 2007–2011: Concordant predictions between MATS and genetic MATS. Human Vaccines and Immunotherapeutics, 2021, 17, 3230-3238.	3.3	7
131	Four-component Meningococcal Serogroup B Vaccine Induces Antibodies With Bactericidal Activity Against Diverse Outbreak Strains in Adolescents. Pediatric Infectious Disease Journal, 2021, 40, e66-e71.	2.0	7
132	The meningococcal vaccine antigen GNA2091 is an analogue of YraP and plays key roles in outer membrane stability and virulence. FASEB Journal, 2019, 33, 12324-12335.	0.5	6
133	4CMenB vaccine induces elite cross-protective human antibodies that compete with human factor H for binding to meningococcal fHbp. PLoS Pathogens, 2020, 16, e1008882.	4.7	6
134	Development and Characterisation of a Four-Plex Assay to Measure Streptococcus pyogenes Antigen-Specific IgG in Human Sera. Methods and Protocols, 2022, 5, 55.	2.0	6
135	NMR resonance assignments of NarE, a putative ADP-ribosylating toxin from Neisseria meningitidis. Biomolecular NMR Assignments, 2011, 5, 35-38.	0.8	5
136	Optimized fluorescent labeling to identify memory B cells specific for Neisseria meningitidis serogroup B vaccine antigens ex vivo. Immunity, Inflammation and Disease, 2013, 1, 3-13.	2.7	5
137	Genomic Characterization of Invasive Meningococcal Serogroup B Isolates and Estimation of 4CMenB Vaccine Coverage in Finland. MSphere, 2020, 5, .	2.9	5
138	Cross-reactivity of 4CMenB vaccine-induced antibodies against meningococci belonging to non-B serogroups in Italy. Human Vaccines and Immunotherapeutics, 2021, 17, 2225-2231.	3.3	5
139	Evolution of strain coverage by the multicomponent meningococcal serogroup B vaccine (4CMenB) in France. Human Vaccines and Immunotherapeutics, 2024, 17, 5614-5622.	3.3	5
140	Advances in meningococcal vaccines. Clinical Practice (London, England), 2012, 9, 101-117.	0.1	4
141	Potential impact of the 4CMenB vaccine on oropharyngeal carriage of Neisseria meningitidis. Journal of Infection, 2017, 75, 511-520.	3.3	4
142	Identification of lipid A deacylase as a novel, highly conserved and protective antigen against enterohemorrhagic Escherichia coli. Scientific Reports, 2019, 9, 17014.	3.3	4
143	The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity. PLoS ONE, 2015, 10, e0127614.	2.5	4
144	Whole-Genome Sequences of Nonencapsulated Haemophilus influenzae Strains Isolated in Italy. Genome Announcements, 2015, 3, .	0.8	3

#	Article	IF	CITATIONS
145	1H, 13C and 15N assignment of the C-terminal domain of GNA2132 from Neisseria meningitidis. Biomolecular NMR Assignments, 2010, 4, 107-109.	0.8	2
146	Preface. Vaccine, 2012, 30, B1-B2.	3.8	1
147	Spotlight on… Mariagrazia Pizza. FEMS Microbiology Letters, 2017, 364, fnw299.	1.8	1
148	Design of New Vaccines in the Genomic and Post-genomic Era. , 2012, , 3-15.		1
149	Vaccinology – Editorial. Seminars in Immunology, 2020, 50, 101439.	5.6	1
150	Animal models in vaccinology: state of the art and future perspectives for an animal-free approach. Current Opinion in Microbiology, 2022, 66, 46-55.	5.1	1
151	A life passion for vaccines. Hum Vaccin, 2011, 7, 808-810.	2.4	0
152	Meningococcal Vaccines: A Technological Revolution. Frontiers for Young Minds, 0, 8, .	0.8	0
153	Structural characterization of a cross-protective natural chimera of factor H binding protein from meningococcal serogroup B strain NL096. Computational and Structural Biotechnology Journal, 2022, 20, 2070-2081.	4.1	0