## Martien A Hulsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6127929/publications.pdf Version: 2024-02-01



MADTIEN & HULSEN

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms. Journal of Non-Newtonian Fluid Mechanics, 2005, 127, 27-39.                   | 2.4 | 298       |
| 2  | Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames. Journal of Non-Newtonian Fluid Mechanics, 2004, 121, 15-33.                                         | 2.4 | 114       |
| 3  | Viscoelasticity-induced migration of a rigid sphere in confined shear flow. Journal of Non-Newtonian<br>Fluid Mechanics, 2010, 165, 466-474.                                                          | 2.4 | 96        |
| 4  | Particle motion in square channel flow of a viscoelastic liquid: Migration vs. secondary flows.<br>Journal of Non-Newtonian Fluid Mechanics, 2013, 195, 1-8.                                          | 2.4 | 96        |
| 5  | Chaotic mixing induced by a magnetic chain in a rotating magnetic field. Physical Review E, 2007, 76, 066303.                                                                                         | 2.1 | 87        |
| 6  | A sufficient condition for a positive definite configuration tensor in differential models. Journal of<br>Non-Newtonian Fluid Mechanics, 1990, 38, 93-100.                                            | 2.4 | 80        |
| 7  | Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I: Simulation results.<br>Journal of Rheology, 2008, 52, 1331-1346.                                                       | 2.6 | 77        |
| 8  | Direct simulation of particle suspensions in sliding bi-periodic frames. Journal of Computational Physics, 2004, 194, 742-772.                                                                        | 3.8 | 71        |
| 9  | Thermodynamics of viscoelastic fluids: The temperature equation. Journal of Rheology, 1998, 42, 999-1019.                                                                                             | 2.6 | 66        |
| 10 | Stability analysis of injection molding flows. Journal of Rheology, 2004, 48, 765-785.                                                                                                                | 2.6 | 62        |
| 11 | Modeling of Flow-Induced Crystallization of Particle-Filled Polymers. Macromolecules, 2006, 39, 8389-8398.                                                                                            | 4.8 | 61        |
| 12 | Effect of viscoelasticity on the rotation of a sphere in shear flow. Journal of Non-Newtonian Fluid<br>Mechanics, 2011, 166, 363-372.                                                                 | 2.4 | 57        |
| 13 | Simulations of viscoelasticity-induced focusing of particles in pressure-driven micro-slit flow.<br>Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 1396-1405.                                   | 2.4 | 54        |
| 14 | An extended finite element method for the simulation of particulate viscoelastic flows. Journal of<br>Non-Newtonian Fluid Mechanics, 2010, 165, 607-624.                                              | 2.4 | 53        |
| 15 | A direct simulation method for flows with suspended paramagnetic particles. Journal of Computational Physics, 2008, 227, 4441-4458.                                                                   | 3.8 | 50        |
| 16 | Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part II. Experimental results.<br>Journal of Rheology, 2009, 53, 459-480.                                                      | 2.6 | 50        |
| 17 | Disaggregation of microparticle clusters by induced magnetic dipole–dipole repulsion near a surface.<br>Lab on A Chip, 2013, 13, 1394.                                                                | 6.0 | 50        |
| 18 | Numerical study on the effect of viscoelasticity on drop deformation in simple shear and 5:1:5 planar contraction/expansion microchannel. Journal of Non-Newtonian Fluid Mechanics, 2008, 155, 80-93. | 2.4 | 41        |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Numerical simulation of contraction flows using a multi-mode Giesekus model. Journal of<br>Non-Newtonian Fluid Mechanics, 1991, 38, 183-221.                                     | 2.4 | 40        |
| 20 | Numerical simulations of deformable particle lateral migration in tube flow of Newtonian and viscoelastic media. Journal of Non-Newtonian Fluid Mechanics, 2016, 234, 105-113.   | 2.4 | 36        |
| 21 | Modeling flow-induced crystallization in isotactic polypropylene at high shear rates. Journal of Rheology, 2015, 59, 613-642.                                                    | 2.6 | 35        |
| 22 | Tools to Simulate Distributive Mixing in Twinâ€Screw Extruders. Macromolecular Theory and Simulations, 2012, 21, 217-240.                                                        | 1.4 | 32        |
| 23 | Mathematical and physical requirements for successful computations with viscoelastic fluid models.<br>Journal of Non-Newtonian Fluid Mechanics, 1988, 29, 93-117.                | 2.4 | 31        |
| 24 | Numerical simulations of particle migration in a viscoelastic fluid subjected to Poiseuille flow.<br>Computers and Fluids, 2011, 42, 82-91.                                      | 2.5 | 31        |
| 25 | Numerical simulation of the fountain flow instability in injection molding. Journal of Non-Newtonian<br>Fluid Mechanics, 2010, 165, 631-640.                                     | 2.4 | 30        |
| 26 | Simulation of the flow of a viscoelastic fluid around a stationary cylinder using an extended finite element method. Computers and Fluids, 2012, 57, 183-194.                    | 2.5 | 30        |
| 27 | Chaotic advection using passive and externally actuated particles in a serpentine channel flow.<br>Chemical Engineering Science, 2007, 62, 6677-6686.                            | 3.8 | 29        |
| 28 | Numerical simulation of planar elongational flow of concentrated rigid particle suspensions in a viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics, 2008, 150, 65-79. | 2.4 | 29        |
| 29 | Effects of confinement on the motion of a single sphere in a sheared viscoelastic liquid. Journal of<br>Non-Newtonian Fluid Mechanics, 2009, 157, 101-107.                       | 2.4 | 28        |
| 30 | Effect of viscoelasticity on drop dynamics in 5:1:5 contraction/expansion microchannel flow.<br>Chemical Engineering Science, 2009, 64, 4515-4524.                               | 3.8 | 28        |
| 31 | Structure Formation of Non olloidal Particles in Viscoelastic Fluids Subjected to Simple Shear Flow.<br>Macromolecular Materials and Engineering, 2011, 296, 321-330.            | 3.6 | 28        |
| 32 | Alignment of particles in a confined shear flow of a viscoelastic fluid. Journal of Non-Newtonian<br>Fluid Mechanics, 2012, 175-176, 89-103.                                     | 2.4 | 28        |
| 33 | Dynamics of magnetic chains in a shear flow under the influence of a uniform magnetic field. Physics of Fluids, 2012, 24, .                                                      | 4.0 | 28        |
| 34 | Simulations of an elastic particle in Newtonian and viscoelastic fluids subjected to confined shear<br>flow. Journal of Non-Newtonian Fluid Mechanics, 2014, 210, 47-55.         | 2.4 | 27        |
| 35 | Numerical simulations on the dynamics of a spheroid in a viscoelastic liquid in a wide-slit microchannel. Journal of Non-Newtonian Fluid Mechanics, 2019, 263, 33-41.            | 2.4 | 27        |
| 36 | Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow. Computers and Fluids, 2015, 107, 214-223.  | 2.5 | 26        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Some properties and analytical expressions for plane flow of leonov and giesekus models. Journal of<br>Non-Newtonian Fluid Mechanics, 1988, 30, 85-92.                                                      | 2.4 | 23        |
| 38 | Direct numerical simulations of hard particle suspensions in planar elongational flow. Journal of Non-Newtonian Fluid Mechanics, 2006, 136, 167-178.                                                        | 2.4 | 22        |
| 39 | Temperature-dependent sintering of two viscous particles. Additive Manufacturing, 2018, 24, 528-542.                                                                                                        | 3.0 | 21        |
| 40 | Chaotic advection in a cavity flow with rigid particles. Physics of Fluids, 2005, 17, 043602.                                                                                                               | 4.0 | 20        |
| 41 | A numerical method for simulating concentrated rigid particle suspensions in an elongational flow using a fixed grid. Journal of Computational Physics, 2007, 226, 688-711.                                 | 3.8 | 20        |
| 42 | Simulation of extrudate swell using an extended finite element method. Korea Australia Rheology<br>Journal, 2011, 23, 147-154.                                                                              | 1.7 | 19        |
| 43 | Strong vortical flows generated by the collective motion of magnetic particle chains rotating in a fluid cell. Lab on A Chip, 2015, 15, 351-360.                                                            | 6.0 | 19        |
| 44 | Sintering of Two Viscoelastic Particles: A Computational Approach. Applied Sciences (Switzerland), 2017, 7, 516.                                                                                            | 2.5 | 19        |
| 45 | Time dependent finite element analysis of the linear stability of viscoelastic flows with interfaces.<br>Journal of Non-Newtonian Fluid Mechanics, 2003, 116, 33-54.                                        | 2.4 | 18        |
| 46 | Computational analysis of the extrudate shape of three-dimensional viscoelastic, non-isothermal extrusion flows. Journal of Non-Newtonian Fluid Mechanics, 2020, 282, 104310.                               | 2.4 | 18        |
| 47 | Direct simulation of the dynamics of two spherical particles actuated magnetically in a viscous fluid.<br>Computers and Fluids, 2013, 86, 569-581.                                                          | 2.5 | 17        |
| 48 | Numerical stability of the method of Brownian configuration fields. Journal of Non-Newtonian Fluid<br>Mechanics, 2009, 157, 188-196.                                                                        | 2.4 | 15        |
| 49 | Anisotropy parameter restrictions for the eXtended Pom-Pom model. Journal of Non-Newtonian Fluid<br>Mechanics, 2010, 165, 1047-1054.                                                                        | 2.4 | 15        |
| 50 | Shear-Induced Migration of Rigid Particles near an Interface between a Newtonian and a Viscoelastic<br>Fluid. Langmuir, 2018, 34, 1795-1806.                                                                | 3.5 | 15        |
| 51 | Fluctuating viscoelasticity. Journal of Non-Newtonian Fluid Mechanics, 2018, 256, 42-56.                                                                                                                    | 2.4 | 15        |
| 52 | Viscoelastic fluid flow simulation using the contravariant deformation formulation. Journal of Non-Newtonian Fluid Mechanics, 2019, 270, 23-35.                                                             | 2.4 | 14        |
| 53 | Extended finite element method for viscous flow inside complex threeâ€dimensional geometries with moving internal boundaries. International Journal for Numerical Methods in Fluids, 2012, 70, 775-792.<br> | 1.6 | 13        |
| 54 | Modeling of complex interfaces for pendant drop experiments. Rheologica Acta, 2016, 55, 801-822.                                                                                                            | 2.4 | 13        |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Numerical simulations of the dynamics of a slippery particle in Newtonian and viscoelastic fluids<br>subjected to shear and Poiseuille flows. Journal of Non-Newtonian Fluid Mechanics, 2016, 228, 46-54.      | 2.4 | 13        |
| 56 | Simulation of bubble growth during the foaming process and mechanics of the solid foam.<br>Rheologica Acta, 2019, 58, 131-144.                                                                                 | 2.4 | 13        |
| 57 | Benchmark solutions for flows with rheologically complex interfaces. Journal of Non-Newtonian<br>Fluid Mechanics, 2020, 286, 104436.                                                                           | 2.4 | 12        |
| 58 | Accurate quantification of magnetic particle properties by intra-pair magnetophoresis for nanobiotechnology. Applied Physics Letters, 2013, 103, 043704.                                                       | 3.3 | 11        |
| 59 | On the streamfunction–vorticity formulation in sliding bi-period frames: Application to bulk behavior<br>for polymer blends. Journal of Computational Physics, 2006, 212, 268-287.                             | 3.8 | 10        |
| 60 | Modeling and simulation of viscoelastic film retraction. Journal of Non-Newtonian Fluid Mechanics, 2017, 249, 26-35.                                                                                           | 2.4 | 10        |
| 61 | Direct numerical simulation of a bubble suspension in small amplitude oscillatory shear flow.<br>Rheologica Acta, 2017, 56, 555-565.                                                                           | 2.4 | 9         |
| 62 | Numerical simulations of cell sorting through inertial microfluidics. Physics of Fluids, 2022, 34, .                                                                                                           | 4.0 | 9         |
| 63 | Numerical simulation of the divergent flow regime in a circular contraction flow of a viscoelastic fluid. Theoretical and Computational Fluid Dynamics, 1993, 5, 33-48.                                        | 2.2 | 8         |
| 64 | A lower bound for the invariants of the configuration tensor for some well-known differential models. Journal of Non-Newtonian Fluid Mechanics, 1995, 60, 349-355.                                             | 2.4 | 8         |
| 65 | On the validity of 2D analysis of non-isothermal sintering in SLS. Chemical Engineering Science, 2020, 213, 115365.                                                                                            | 3.8 | 8         |
| 66 | Separation of particles in non-Newtonian fluids flowing in T-shaped microchannels. Advanced<br>Modeling and Simulation in Engineering Sciences, 2015, 2, .                                                     | 1.7 | 7         |
| 67 | Die shape optimization for extrudate swell using feedback control. Journal of Non-Newtonian Fluid<br>Mechanics, 2021, 293, 104552.                                                                             | 2.4 | 7         |
| 68 | Numerical Study of the Effect of Thixotropy on Extrudate Swell. Polymers, 2021, 13, 4383.                                                                                                                      | 4.5 | 7         |
| 69 | The effect of wall slip on the dynamics of a spherical particle in Newtonian and viscoelastic fluids<br>subjected to shear and Poiseuille flows. Journal of Non-Newtonian Fluid Mechanics, 2016, 236, 123-131. | 2.4 | 6         |
| 70 | Numerical simulations of the separation of elastic particles in a T-shaped bifurcation. Journal of<br>Non-Newtonian Fluid Mechanics, 2016, 233, 75-84.                                                         | 2.4 | 6         |
| 71 | The deformation fields method revisited: Stable simulation of instationary viscoelastic fluid flow using integral models. Journal of Non-Newtonian Fluid Mechanics, 2018, 262, 68-78.                          | 2.4 | 6         |
| 72 | A Numerical Study of Particle Migration and Sedimentation in Viscoelastic Couette Flow. Fluids, 2019, 4, 25.                                                                                                   | 1.7 | 6         |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Behavior of viscoelastic models with thermal fluctuations. European Physical Journal E, 2020, 43, 24.                                                                                        | 1.6 | 6         |
| 74 | Numerical analysis of the crystallization kinetics in SLS. Additive Manufacturing, 2020, 33, 101126.                                                                                         | 3.0 | 6         |
| 75 | Constitutive framework for rheologically complex interfaces with an application to elastoviscoplasticity. Journal of Non-Newtonian Fluid Mechanics, 2022, 301, 104726.                       | 2.4 | 6         |
| 76 | Numerical simulations of viscoelastic film stretching and retraction. Journal of Non-Newtonian<br>Fluid Mechanics, 2019, 266, 118-126.                                                       | 2.4 | 5         |
| 77 | Finite Element Modeling of a Viscous Fluid Flowing through an External Gear Pump. Macromolecular<br>Theory and Simulations, 2021, 30, 2000060.                                               | 1.4 | 5         |
| 78 | A 2D hysteretic DEM model for arbitrarily shaped polygonal particles. Powder Technology, 2021, 378, 327-338.                                                                                 | 4.2 | 5         |
| 79 | Transient modeling of fiber spinning with filament pull-out. Journal of Non-Newtonian Fluid<br>Mechanics, 2014, 208-209, 72-87.                                                              | 2.4 | 4         |
| 80 | Numerical simulations of linear viscoelasticity of monodisperse emulsions of Newtonian drops in a<br>Newtonian fluid from dilute to concentrated regime. Rheologica Acta, 2014, 53, 401-416. | 2.4 | 4         |
| 81 | Magnetic interaction of Janus magnetic particles suspended in a viscous fluid. Physical Review E, 2016, 93, 022607.                                                                          | 2.1 | 4         |
| 82 | A numerical model for the development of the morphology of disperse blends in complex flow.<br>Rheologica Acta, 2019, 58, 79-95.                                                             | 2.4 | 4         |
| 83 | Numerical simulations of the polydisperse droplet size distribution of disperse blends in complex flow. Rheologica Acta, 2021, 60, 187-207.                                                  | 2.4 | 4         |
| 84 | An extended finite element method for a diffuse-interface model. Journal of Computational and Applied Mathematics, 2014, 272, 25-40.                                                         | 2.0 | 3         |
| 85 | Fluid Flow and Distributive Mixing Analysis in the Cavity Transfer Mixer. Macromolecular Theory and Simulations, 2018, 27, 1700075.                                                          | 1.4 | 3         |
| 86 | Brownian configuration fields: A new method for simulating viscoelastic fluid flow.<br>Macromolecular Symposia, 1997, 121, 205-217.                                                          | 0.7 | 2         |
| 87 | Rheology of a Dilute Suspension of Spheres in a Viscoelastic Fluid Under Large Amplitude<br>Oscillations. Journal of Computational and Theoretical Nanoscience, 2010, 7, 780-786.            | 0.4 | 2         |
| 88 | Bubble impingement in the presence of a solid particle: A computational study. Computers and Fluids, 2018, 170, 349-356.                                                                     | 2.5 | 2         |
| 89 | Fully implicit interface tracking for a viscous drop under simple shear. Computers and Fluids, 2019, 184, 91-98.                                                                             | 2.5 | 2         |
| 90 | Numerical stability of four positive (semi-)definite reformulations for viscoelastic fluid models in benchmark flows. Journal of Non-Newtonian Fluid Mechanics, 2021, 297, 104666.           | 2.4 | 1         |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Threeâ€Dimensional Finite Element Modeling Of A Viscous Fluid Flowing Through An External Gear<br>Pump. Macromolecular Theory and Simulations, 2022, 31, 2100046. | 1.4 | 1         |
| 92 | Numerical Study of Residual Stresses Due to External Cooling in Extruded Polymer Profiles.<br>Macromolecular Theory and Simulations, 0, , 2100074.                | 1.4 | 1         |
| 93 | The effect of non-Newtonian behavior on contact formation in an external gear pump. Journal of Non-Newtonian Fluid Mechanics, 2022, , 104818.                     | 2.4 | 1         |
| 94 | Effect of Viscoelasticity on Drop Deformation in 5:1:5 Contractionâ^•Expansion Micro-Channel Flow. AIP Conference Proceedings, 2008, , .                          | 0.4 | 0         |
| 95 | Numerical Modeling of the Blend Morphology Evolution in Twinâ€Screw Extruders. Macromolecular<br>Theory and Simulations, 2022, 31, .                              | 1.4 | 0         |