
José A SÃjez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6126967/publications.pdf Version: 2024-02-01

LOSÃO A SÃ:EZ

#	Article	IF	CITATIONS
1	Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Advances, 2013, 3, 1486-1494.	3.6	628
2	Understanding the mechanism of polar Diels–Alder reactions. Organic and Biomolecular Chemistry, 2009, 7, 3576.	2.8	427
3	Understanding the Participation of Quadricyclane as Nucleophile in Polar [2σ + 2σ + 2π] Cycloadditions toward Electrophilic π Molecules. Journal of Organic Chemistry, 2008, 73, 8791-8799.	3.2	220
4	Toward an Understanding of the Unexpected Regioselective Hetero-Dielsâ^'Alder Reactions of Asymmetric Tetrazines with Electron-Rich Ethylenes: A DFT Study. Journal of Organic Chemistry, 2009, 74, 2726-2735.	3.2	92
5	Understanding the Electronic Reorganization along the Nonpolar [3 + 2] Cycloaddition Reactions of Carbonyl Ylides Journal of Organic Chemistry, 2011, 76, 373-379.	3.2	89
6	1,3-Dipolar Cycloadditions of Electrophilically Activated Benzonitrile N-Oxides. Polar Cycloaddition versus Oxime Formation. Journal of Organic Chemistry, 2006, 71, 9319-9330.	3.2	56
7	Understanding the mechanism of the Povarov reaction. A DFT study. RSC Advances, 2014, 4, 25268.	3.6	54
8	Understanding the origin of the asynchronicity in bond-formation in polar cycloaddition reactions. A DFT study of the 1,3-dipolar cycloaddition reaction of carbonyl ylides with 1,2-benzoquinones. RSC Advances, 2012, 2, 1334-1342.	3.6	53
9	Understanding the regioselectivity in hetero Diels–Alder reactions. AnÂELF analysis of the reaction between nitrosoethylene and 1-vinylpyrrolidine. Tetrahedron, 2013, 69, 107-114.	1.9	52
10	Origin of the synchronicity in bond formation in polar Diels–Alder reactions: an ELF analysis of the reaction between cyclopentadiene and tetracyanoethylene. Organic and Biomolecular Chemistry, 2012, 10, 3841.	2.8	51
11	A Combined Experimental and Theoretical Study of the Polar [3 + 2] Cycloaddition of Electrophilically Activated Carbonyl Ylides with Aldehydes and Imines. Journal of Organic Chemistry, 2009, 74, 2120-2133.	3.2	49
12	A comparative analysis of the electrophilicity of organic molecules between the computed IPs and EAs and the HOMO and LUMO energies. Chemical Physics Letters, 2007, 438, 341-345.	2.6	46
13	Supramolecular hydrogels for enzymatically triggered self-immolative drug delivery. Tetrahedron, 2010, 66, 2614-2618.	1.9	46
14	Selective catechol-triggered supramolecular gel disassembly. Chemical Communications, 2010, 46, 7996.	4.1	42
15	Stereoisomerization of β-Hydroxy-α-sulfenyl-γ-butyrolactones Controlled by Two Concomitant 1,4-Type Nonbonded Sulfurâ^Oxygen Interactions As Analyzed by X-ray Crystallography. Journal of Organic Chemistry, 2010, 75, 5888-5894.	3.2	40
16	Lewis Acid-Catalyzed [4 + 3] Cycloaddition of 2-(Trimethyl Silyloxy)acrolein with Furan. Insight on the Nature of the Mechanism from a DFT Analysis. Organic Letters, 2003, 5, 4117-4120.	4.6	39
17	Toward an understanding of the 1,3-dipolar cycloaddition between diphenylnitrone and a maleimide:bisamide complex. A DFT analysis of the reactivity of symmetrically substituted dipolarophiles. Computational and Theoretical Chemistry, 2007, 811, 125-133.	1.5	38
18	Understanding the Mechanism of the Intramolecular Stetter Reaction. A DFT Study. Molecules, 2012, 17, 1335-1353.	3.8	34

José A SÃiez

#	Article	IF	CITATIONS
19	A combined experimental and theoretical study of the thermal cycloaddition of aryl azides with activated alkenes. Organic and Biomolecular Chemistry, 2011, 9, 4295.	2.8	33
20	A DFT study for the regioselective 1,3-dipolar cycloadditions of nitrile N-oxides toward alkynylboronates. Tetrahedron, 2003, 59, 9167-9171.	1.9	32
21	Toward an Understanding of the Acceleration of Dielsâ^'Alder Reactions by a Pseudo-intramolecular Process Achieved by Molecular Recognition. A DFT Study. Journal of Organic Chemistry, 2007, 72, 4220-4227.	3.2	32
22	Experimental and theoretical study on the substitution reactions of aryl 2,4-dinitrophenyl carbonates with quinuclidines. Tetrahedron, 2006, 62, 2555-2562.	1.9	31
23	Polar [3 + 2] cycloaddition of ketones with electrophilically activated carbonyl ylides. Synthesis of spirocyclic dioxolane indolinones. Organic and Biomolecular Chemistry, 2008, 6, 3144.	2.8	30
24	Molecular recognition through divalent interactions with a self-assembled fibrillar network of a supramolecular organogel. Organic and Biomolecular Chemistry, 2008, 6, 4378.	2.8	30
25	A DFT study on the NHC catalysed Michael addition of enols to α,β-unsaturated acyl-azoliums. A base catalysed C–C bond-formation step. Organic and Biomolecular Chemistry, 2014, 12, 895-904.	2.8	30
26	Photophysical properties of 5-substituted 2-thiopyrimidines. Photochemical and Photobiological Sciences, 2013, 12, 1460-1465.	2.9	28
27	A DFT Study of the [3 + 2] versus [4 + 2] Cycloaddition Reactions of 1,5,6-Trimethylpyrazinium-3-olate with Methyl Methacrylate. Journal of Organic Chemistry, 2013, 78, 1621-1629.	3.2	28
28	DFT Study of the Molecular Mechanism of Lewis Acid Induced [4 + 3] Cycloadditions of 2-Alkylacroleins with Cyclopentadiene. Journal of Organic Chemistry, 2009, 74, 5934-5940.	3.2	25
29	Understanding C–C bond formation in polar reactions. An ELF analysis of the Friedel–Crafts reaction between indoles and nitroolefins. RSC Advances, 2013, 3, 7520.	3.6	23
30	Unravelling the mechanism of the ketene-imine Staudinger reaction. An ELF quantum topological analysis. RSC Advances, 2015, 5, 37119-37129.	3.6	23
31	An ELF analysis of the C–C bond formation step in the N-heterocyclic carbene-catalyzed hydroacylation of unactivated C–C double bonds. RSC Advances, 2012, 2, 7127.	3.6	21
32	Experimental and theoretical investigations for the tandem alkylation–isomerization reactions between unsaturated carboxylic acids and allyl halides. Tetrahedron, 2003, 59, 6233-6239.	1.9	20
33	Lewis acid induced [4+3] cycloadditions of 2-silyloxyacroleins. Insights on the mechanism from a DFT analysis. Tetrahedron, 2005, 61, 7538-7545.	1.9	20
34	Understanding the formation of [3+2] and [2+4] cycloadducts in the Lewis acid catalysed reaction between methyl glyoxylate oxime and cyclopentadiene: a theoretical study. RSC Advances, 2013, 3, 447-457.	3.6	20
35	Study of the stereoselectivity of the nucleophilic epoxidation of 3-hydroxy-2-methylene esters. Tetrahedron, 2014, 70, 97-102.	1.9	20
36	Understanding the Bond Formation in Hetero-Diels-Alder Reactions. An ELF Analysis of the Reaction of Nitroethylene with Dimethylvinylamine. Current Organic Chemistry, 2012, 16, 2343-2351.	1.6	19

José A SÃiez

#	Article	IF	CITATIONS
37	Solvent-free construction of self-assembled 1D nanostructures from low-molecular-weight organogelators: sublimation vs. gelation. Soft Matter, 2009, 5, 3727.	2.7	18
38	Understanding the domino reaction between 3-chloroindoles and methyl coumalate yielding carbazoles. A DFT study. Organic and Biomolecular Chemistry, 2015, 13, 2034-2043.	2.8	15
39	Understanding the selectivity in the formation of δ-lactams <i>vs.</i> β-lactams in the Staudinger reactions of chloro-cyan-ketene with unsaturated imines. A DFT study. RSC Advances, 2014, 4, 58559-58566.	3.6	14
40	Ring splitting of azetidin-2-ones via radical anions. Organic and Biomolecular Chemistry, 2012, 10, 7928.	2.8	13
41	Experimental and theoretical study of the [3 + 2] cycloaddition of carbonyl ylides with alkynes. Organic and Biomolecular Chemistry, 2012, 10, 8434.	2.8	12
42	Protection against chemical submission: naked-eye detection of γ-hydroxybutyric acid (GHB) in soft drinks and alcoholic beverages. Chemical Communications, 2020, 56, 12600-12603.	4.1	12
43	A DFT study for the formation of imidazo[1,2-c]pyrimidines through an intramolecular Michael addition. Tetrahedron, 2006, 62, 10408-10416.	1.9	9
44	Formation of pyrazolâ€1,3,4â€thiadiazoles through 1,3â€dipolar cycloadditions of 3â€thioxoâ€{1,2,4]â€triazepinâ€5â€one with nitrilimines: an experimental and computational study. Journal of Physical Organic Chemistry, 2009, 22, 31-41.	1.9	8
45	Oxetane Ring Enlargement through Nucleophilic Trapping of Radical Cations by Acetonitrile. Organic Letters, 2012, 14, 5700-5703.	4.6	8
46	Cycloreversion of β-lactams via photoinduced electron transfer. Organic and Biomolecular Chemistry, 2014, 12, 8428-8432.	2.8	8
47	Azo-hydrazo conversion via [1,5]-hydrogen shifts. A combined experimental and theoretical study. Tetrahedron, 2012, 68, 6902-6907.	1.9	7
48	Heteroditopic chemosensor to detect Î ³ -hydroxybutyric acid (GHB) in soft drinks and alcoholic beverages. Analyst, The, 2021, 146, 5601-5609.	3.5	5
49	Spermine and Spermidine Detection through Restricted Intramolecular Rotations in a Tetraphenylethylene Derivative. Chemosensors, 2022, 10, 8.	3.6	5
50	Theoretical study on the molecular mechanism of the [5 + 2] vs. [4 + 2] cyclization mediated by Lewis acid in the quinone system. Organic and Biomolecular Chemistry, 2013, 11, 8357.	2.8	2
51	Isomerization and Redox Tuning: Reorganizing the Maya Blue Puzzle from Synthetic, Spectral, and Electrochemical Issues. Journal of Physical Chemistry C, 2021, 125, 26188-26200.	3.1	2
52	Diels-Alderase Catalyzing the Cyclization Step in the Biosynthesis of Spinosyn A. , 2015, , 169-201.		0