Michael Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6126228/publications.pdf

Version: 2024-02-01

271 papers 46,353 citations

108 h-index

1371

2078 204 g-index

277 all docs

277 docs citations

times ranked

277

30308 citing authors

#	Article	IF	CITATIONS
1	Two-dimensional parsing of the acoustic stream explains the lambic–Trochaic Law Psychological Review, 2022, 129, 268-288.	3.8	3
2	Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME Journal, 2022, 16, 272-283.	9.8	96
3	Enrichment of phosphate-accumulating organisms (PAOs) in a microfluidic model biofilm system by mimicking a typical aerobic granular sludge feast/famine regime. Applied Microbiology and Biotechnology, 2022, 106, 1313-1324.	3.6	6
4	On-Line Monitoring of Biofilm Accumulation on Graphite-Polypropylene Electrode Material Using a Heat Transfer Sensor. Biosensors, 2022, 12, 18.	4.7	2
5	Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nature Protocols, 2021, 16, 634-676.	12.0	41
6	Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting. ISME Journal, 2021, 15, 732-745.	9.8	23
7	Flow-through stable isotope probing (Flow-SIP) minimizes cross-feeding in complex microbial communities. ISME Journal, 2021, 15, 348-353.	9.8	14
8	Nano-scale imaging of dual stable isotope labeled oxaliplatin in human colon cancer cells reveals the nucleolus as a putative node for therapeutic effect. Nanoscale Advances, 2021, 3, 249-262.	4.6	14
9	Die Wechselwirkung mit ribosomalen Proteinen begleitet die Stressinduktion des Wirkstoffkandidaten BOLDâ€100/KP1339 im endoplasmatischen Retikulum. Angewandte Chemie, 2021, 133, 5121-5126.	2.0	2
10	Interaction with Ribosomal Proteins Accompanies Stress Induction of the Anticancer Metallodrug BOLDâ€100/KP1339 in the Endoplasmic Reticulum. Angewandte Chemie - International Edition, 2021, 60, 5063-5068.	13.8	39
11	Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont to Oxic-Anoxic Interfaces. MSystems, 2021, 6, e0118620.	3.8	10
12	Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments. Nature Microbiology, 2021, 6, 885-898.	13.3	29
13	Cyanate is a low abundance but actively cycled nitrogen compound in soil. Communications Earth & Environment, 2021, 2, .	6.8	11
14	Sensitivity and specificity of the antigen-based anterior nasal self-testing programme for detecting SARS-CoV-2 infection in schools, Austria, March 2021. Eurosurveillance, 2021, 26, .	7.0	7
15	Recently photoassimilated carbon and fungusâ€delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of <i>Fagus sylvatica</i> . New Phytologist, 2021, 232, 2457-2474.	7.3	19
16	Investigation of Biofilm Growth within a Monodisperse Porous Medium under Fluctuating Water Level Assessed by Means of MRI. Water (Switzerland), 2021, 13, 2456.	2.7	1
17	Raman microspectroscopy for microbiology. Nature Reviews Methods Primers, 2021, 1, .	21.2	57
18	Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. ISME Journal, 2020, 14, 335-346.	9.8	62

#	Article	IF	Citations
19	Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nature Communications, 2020, 11, 5104.	12.8	177
20	Exploring flow-biofilm-sediment interactions: Assessment of current status and future challenges. Water Research, 2020, 185, 116182.	11.3	22
21	Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought. ISME Journal, 2020, 14, 3038-3053.	9.8	43
22	Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant <i>Nitrospira</i> . ISME Journal, 2020, 14, 2967-2979.	9.8	52
23	Transport and retention of artificial and real wastewater particles inside a bed of settled aerobic granular sludge assessed applying magnetic resonance imaging. Water Research X, 2020, 7, 100050.	6.1	10
24	Monitoring and quantification of bioelectrochemical Kyrpidia spormannii biofilm development in a novel flow cell setup. Chemical Engineering Journal, 2020, 390, 124604.	12.7	20
25	Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 2020, 5, 987-994.	13.3	115
26	Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020, 8, 103.	11.1	903
27	Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. Nature Communications, 2020, 11, 767.	12.8	67
28	An open-source robotic platform that enables automated monitoring of replicate biofilm cultivations using optical coherence tomography. Npj Biofilms and Microbiomes, 2020, 6, 18.	6.4	7
29	Transcriptomic Response of Nitrosomonas europaea Transitioned from Ammonia- to Oxygen-Limited Steady-State Growth. MSystems, 2020, 5, .	3.8	33
30	From an extremophilic community to an electroautotrophic production strain: identifying a novel <i>Knallgas</i> bacterium as cathodic biofilm biocatalyst. ISME Journal, 2020, 14, 1125-1140.	9.8	28
31	Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 5972-6016.	1.7	830
32	Raman-based sorting of microbial cells to link functions to their genes. Microbial Cell, 2020, 7, 62-65.	3.2	14
33	Acoustic Correlates of Focus Marking in Czech and Polish. Language and Speech, 2019, 62, 358-377.	1.1	1
34	Processing relative clauses across comprehension and production: similarities and differences. Language, Cognition and Neuroscience, 2019, 34, 170-189.	1.2	3
35	Membrane Lipid Composition of the Moderately Thermophilic Ammonia-Oxidizing Archaeon " <i>Candidatus</i> Nitrosotenuis uzonensis―at Different Growth Temperatures. Applied and Environmental Microbiology, 2019, 85, .	3.1	31
36	On the evolution and physiology of cable bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19116-19125.	7.1	127

#	Article	IF	Citations
37	Specific Micropollutant Biotransformation Pattern by the Comammox Bacterium <i>Nitrospira inopinata</i> . Environmental Science & Environmental Science	10.0	46
38	Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge <i>lanthella basta</i> . Environmental Microbiology, 2019, 21, 3831-3854.	3.8	50
39	Machine-assisted cultivation and analysis of biofilms. Scientific Reports, 2019, 9, 8933.	3.3	18
40	Expansion of $\langle i \rangle$ Thaumarchaeota $\langle j \rangle$ habitat range is correlated with horizontal transfer of ATPase operons. ISME Journal, 2019, 13, 3067-3079.	9.8	59
41	Rapid Transfer of Plant Photosynthates to Soil Bacteria via Ectomycorrhizal Hyphae and Its Interaction With Nitrogen Availability. Frontiers in Microbiology, 2019, 10, 168.	3.5	106
42	Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon. ISME Journal, 2019, 13, 2633-2638.	9.8	35
43	Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers. Water Research, 2019, 159, 444-453.	11.3	83
44	Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195.	13.3	491
45	Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nature Communications, 2019, 10, 1836.	12.8	123
46	An automated Raman-based platform for the sorting of live cells by functional properties. Nature Microbiology, 2019, 4, 1035-1048.	13.3	170
47	Widespread soil bacterium that oxidizes atmospheric methane. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8515-8524.	7.1	149
48	Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME Journal, 2019, 13, 1933-1946.	9.8	130
49	In-situ monitoring and quantification of fouling development in membrane distillation by means of optical coherence tomography. Journal of Membrane Science, 2019, 577, 145-152.	8.2	36
50	Automated 3D Optical Coherence Tomography to Elucidate Biofilm Morphogenesis Over Large Spatial Scales. Journal of Visualized Experiments, 2019, , .	0.3	4
51	Surface-enhanced Raman spectroscopy of microorganisms: limitations and applicability on the single-cell level. Analyst, The, 2019, 144, 943-953.	3.5	37
52	Sulfate is transported at significant rates through the symbiosome membrane and is crucial for nitrogenase biosynthesis. Plant, Cell and Environment, 2019, 42, 1180-1189.	5.7	29
53	Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nature Microbiology, 2019, 4, 234-243.	13.3	103
54	Nitrospira. Trends in Microbiology, 2018, 26, 462-463.	7.7	157

#	Article	IF	Citations
55	Microbial conservation in the Anthropocene. Environmental Microbiology, 2018, 20, 1925-1928.	3.8	19
56	NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host. ISME Journal, 2018, 12, 714-727.	9.8	35
57	Draft Genome Sequence of <i>Telmatospirillum siberiense</i> 26-4b1, an Acidotolerant Peatland Alphaproteobacterium Potentially Involved in Sulfur Cycling. Genome Announcements, 2018, 6, .	0.8	13
58	Quantification of particulate matter attached to the bulk-biofilm interface and its influence on local mass transfer. Separation and Purification Technology, 2018, 197, 86-94.	7.9	6
59	Microbial nitrogen limitation in the mammalian large intestine. Nature Microbiology, 2018, 3, 1441-1450.	13.3	107
60	Apparent diffusion coefficients in sewer force main biofilms treated with iron salts. Environmental Science: Water Research and Technology, 2018, 4, 1501-1510.	2.4	0
61	Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography. Water Research, 2018, 145, 588-598.	11.3	65
62	Morphological analysis of pore size and connectivity in a thick mixedâ€culture biofilm. Biotechnology and Bioengineering, 2018, 115, 2268-2279.	3.3	14
63	Biodegradation of synthetic polymers in soils: Tracking carbon into CO ₂ and microbial biomass. Science Advances, 2018, 4, eaas9024.	10.3	284
64	Cultivation and Genomic Analysis of "Candidatus Nitrosocaldus islandicus,―an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a Hot Spring Biofilm in Graendalur Valley, Iceland. Frontiers in Microbiology, 2018, 9, 193.	3.5	76
65	Characterization of the First " <i>Candidatus</i> Nitrotoga―Isolate Reveals Metabolic Versatility and Separate Evolution of Widespread Nitrite-Oxidizing Bacteria. MBio, 2018, 9, .	4.1	112
66	Ammonia Monooxygenase-Mediated Cometabolic Biotransformation and Hydroxylamine-Mediated Abiotic Transformation of Micropollutants in an AOB/NOB Coculture. Environmental Science & Emp; Technology, 2018, 52, 9196-9205.	10.0	68
67	Long-distance electron transport in individual, living cable bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5786-5791.	7.1	104
68	Reconstructing the syntax of focus operators. Semantics and Pragmatics, 2018, 11, 1.	0.6	5
69	Intonation, <i>yes</i> and <i>no</i> . Glossa, 2018, 3, .	0.5	13
70	North American both darkens and lightens depending on morphological constituency and segmental context. Laboratory Phonology, 2018, 9, 13.	0.6	4
71	Water quality and daily temperature cycle affect biofilm formation in drip irrigation devices revealed by optical coherence tomography. Biofouling, 2017, 33, 211-221.	2.2	22
72	Optical coherence tomography in biofilm research: A comprehensive review. Biotechnology and Bioengineering, 2017, 114, 1386-1402.	3.3	131

#	Article	IF	CITATIONS
73	$\langle i \rangle$ In vivo $\langle i \rangle$ imaging of coral tissue and skeleton with optical coherence tomography. Journal of the Royal Society Interface, 2017, 14, 20161003.	3.4	48
74	Cultivation and characterization of <i>Candidatus</i> Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME Journal, 2017, 11, 1142-1157.	9.8	182
75	Capturing the genetic makeup of the active microbiome <i>in situ</i> i>. ISME Journal, 2017, 11, 1949-1963.	9.8	73
76	<i>Crenothrix</i> are major methane consumers in stratified lakes. ISME Journal, 2017, 11, 2124-2140.	9.8	146
77	Giant viruses with an expanded complement of translation system components. Science, 2017, 356, 82-85.	12.6	234
78	Abiotic Conversion of Extracellular NH ₂ OH Contributes to N ₂ O Emission during Ammonia Oxidation. Environmental Science & Environm	10.0	104
79	Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature, 2017, 549, 269-272.	27.8	588
80	Ammoniaâ€oxidising archaea living at low pH: Insights from comparative genomics. Environmental Microbiology, 2017, 19, 4939-4952.	3.8	107
81	Prosodic prominence shifts are anaphoric. Journal of Memory and Language, 2017, 92, 305-326.	2.1	7
82	AmoA-Targeted Polymerase Chain Reaction Primers for the Specific Detection and Quantification of Comammox Nitrospira in the Environment. Frontiers in Microbiology, 2017, 8, 1508.	3.5	313
83	Acoustic classification of focus: On the web and in the lab. Laboratory Phonology, 2017, 8, 16.	0.6	0
84	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73.	3.5	120
85	Modelling the influence of total suspended solids on E. coli removal in river water. Water Science and Technology, 2016, 73, 1320-1332.	2.5	8
86	Do you reckon it's normally distributed?. Science of the Total Environment, 2016, 548-549, 408-409.	8.0	2
87	Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon <i>Nitrososphaera gargensis</i> . Environmental Science & Environmental Scie	10.0	68
88	Single cell stable isotope probing in microbiology using Raman microspectroscopy. Current Opinion in Biotechnology, 2016, 41, 34-42.	6.6	174
89	The inhibitory effects of reject water on nitrifying populations grown at different biofilm thickness. Water Research, 2016, 104, 292-302.	11.3	54
90	A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. Trends in Microbiology, 2016, 24, 699-712.	7.7	625

#	Article	IF	Citations
91	Assessing the influence of biofilm surface roughness on mass transfer by combining optical coherence tomography and twoâ€dimensional modeling. Biotechnology and Bioengineering, 2016, 113, 989-1000.	3.3	29
92	Relative clause extraposition and prosody in German. Natural Language and Linguistic Theory, 2016, 34, 1021-1066.	1.0	14
93	Optical coherence tomography for the in situ three-dimensional visualization and quantification of feed spacer channel fouling in reverse osmosis membrane modules. Journal of Membrane Science, 2016, 498, 345-352.	8.2	72
94	Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous †streamer†to community. ISME Journal, 2016, 10, 210-224.	9.8	94
95	A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reefâ€building corals. Environmental Microbiology, 2015, 17, 3570-3580.	3.8	76
96	Timeâ€resolved biofilm deformation measurements using optical coherence tomography. Biotechnology and Bioengineering, 2015, 112, 1893-1905.	3.3	76
97	Information Structure and Production Planning. , 2015, , .		3
98	Accessibility is no alternative to alternatives. Language, Cognition and Neuroscience, 2015, 30, 212-233.	1.2	7
99	34. Phonological Evidence in Syntax. , 2015, , 1154-1198.		28
100	Low biosorption of PVA coated engineered magnetic nanoparticles in granular sludge assessed by magnetic susceptibility. Science of the Total Environment, 2015, 537, 43-50.	8.0	10
101	<i>Nitrotoga</i> -like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants. ISME Journal, 2015, 9, 708-720.	9.8	135
102	Cyanate as an energy source for nitrifiers. Nature, 2015, 524, 105-108.	27.8	231
103	Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis. Journal of Immunology, 2015, 195, 5011-5024.	0.8	40
104	Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiology Ecology, 2015, 91, fiv106.	2.7	105
105	Complete nitrification by Nitrospira bacteria. Nature, 2015, 528, 504-509.	27.8	1,878
106	Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus <i>Nitrospira</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11371-11376.	7.1	439
107	Functionally relevant diversity of closely related <i>Nitrospira</i> in activated sludge. ISME Journal, 2015, 9, 643-655.	9.8	172
108	Revisiting N2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. ISME Journal, 2015, 9, 485-496.	9.8	69

#	Article	IF	CITATIONS
109	Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains. PLoS Biology, 2014, 12, e1001920.	5.6	190
110	Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nature Communications, 2014, 5, 5497.	12.8	119
111	Type I interferons have opposing effects during the emergence and recovery phases of colitis. European Journal of Immunology, 2014, 44, 2749-2760.	2.9	39
112	<scp><i>NxrB</i></scp> encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitriteâ€oxidizing <scp><i>N</i></scp> <i>itrospiraEnvironmental Microbiology, 2014, 16, 3055-3071.</i>	3.8	280
113	High-fat diet alters gut microbiota physiology in mice. ISME Journal, 2014, 8, 295-308.	9.8	583
114	Longitudinal study of murine microbiota activity and interactions with the host during acute inflammation and recovery. ISME Journal, 2014, 8, 1101-1114.	9.8	174
115	NanoSIMS combined with fluorescence microscopy as a tool for subcellular imaging of isotopically labeled platinum-based anticancer drugs. Chemical Science, 2014, 5, 3135-3143.	7.4	87
116	Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science, 2014, 345, 1052-1054.	12.6	166
117	Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4720-4725.	7.1	210
118	Enrichment and Genome Sequence of the Group I.1a Ammonia-Oxidizing Archaeon "Ca. Nitrosotenuis uzonensis―Representing a Clade Globally Distributed in Thermal Habitats. PLoS ONE, 2013, 8, e80835.	2.5	84
119	Bacteriocyte-associated gammaproteobacterial symbionts of the <i>Adelges nordmannianae/piceae</i> complex (Hemiptera: Adelgidae). ISME Journal, 2012, 6, 384-396.	9.8	49
120	Complete Genome Sequences of Desulfosporosinus orientis DSM765 ^T , Desulfosporosinus youngiae DSM17734 ^T , Desulfosporosinus meridiei DSM13257 ^T , and Desulfosporosinus acidiphilus DSM22704 ^T . Journal of Bacteriology, 2012, 194, 6300-6301.	2.2	73
121		2.2	7
122	A Straightforward DOPE (Double Labeling of Oligonucleotide Probes)-FISH (FluorescenceIn) Tj ETQq0 0 0 rgBT /Ove Applied and Environmental Microbiology, 2012, 78, 5138-5142.		Tf 50 227 To 48
123	The genome of the ammoniaâ€oxidizing <i><scp>C</scp>andidatus</i> <scp>N</scp> itrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environmental Microbiology, 2012, 14, 3122-3145.	3.8	332
124	Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 2012, 491, 541-546.	27.8	498
125	Intracellular Vesicles as Reproduction Elements in Cell Wall-Deficient L-Form Bacteria. PLoS ONE, 2012, 7, e38514.	2.5	36
126	Focus and givenness: a unified approach. , 2012, , 102-147.		80

#	Article	IF	CITATIONS
127	Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME Journal, 2012, 6, 2091-2106.	9.8	291
128	New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Current Opinion in Biotechnology, 2012, 23, 96-102.	6.6	86
129	<i>amoA</i> â€based consensus phylogeny of ammoniaâ€oxidizing archaea and deep sequencing of <i>amoA</i> genes from soils of four different geographic regions. Environmental Microbiology, 2012, 14, 525-539.	3.8	485
130	Modeling Formamide Denaturation of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics. PLoS ONE, 2012, 7, e43862.	2.5	16
131	Barcoded Primers Used in Multiplex Amplicon Pyrosequencing Bias Amplification. Applied and Environmental Microbiology, 2011, 77, 7846-7849.	3.1	514
132	In Situ Techniques and Digital Image Analysis Methods for Quantifying Spatial Localization Patterns of Nitrifiers and Other Microorganisms in Biofilm and Flocs. Methods in Enzymology, 2011, 496, 185-215.	1.0	30
133	The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Current Opinion in Microbiology, 2011, 14, 300-306.	5.1	511
134	Systematic Spatial Bias in DNA Microarray Hybridization Is Caused by Probe Spot Position-Dependent Variability in Lateral Diffusion. PLoS ONE, 2011, 6, e23727.	2.5	18
135	Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiology Ecology, 2011, 78, 497-510.	2.7	73
136	<i>Nitrososphaera viennensis</i> , an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8420-8425.	7.1	810
137	Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont $\langle i \rangle$ Protochlamydia amoebophila $\langle i \rangle$. Proteomics, 2011, 11, 1868-1892.	2.2	12
138	Microorganisms with Novel Dissimilatory (Bi)Sulfite Reductase Genes Are Widespread and Part of the Core Microbiota in Low-Sulfate Peatlands. Applied and Environmental Microbiology, 2011, 77, 1231-1242.	3.1	49
139	Thaumarchaeotes abundant in refinery nitrifying sludges express <i>amoA</i> but are not obligate autotrophic ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16771-16776.	7.1	272
140	Unexpected Diversity of Chlorite Dismutases: a Catalytically Efficient Dimeric Enzyme from Nitrobacter winogradskyi. Journal of Bacteriology, 2011, 193, 2408-2417.	2.2	76
141	<i>Paracatenula</i> , an ancient symbiosis between thiotrophic <i>Alphaproteobacteria</i> and catenulid flatworms. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12078-12083.	7.1	75
142	Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environmental Microbiology, 2010, 12, 2070-2082.	3.8	394
143	Prosody and recursion in coordinate structures andÂbeyond. Natural Language and Linguistic Theory, 2010, 28, 183-237.	1.0	78
144	Poetic rhyme reflects cross-linguistic differences in information structure. Cognition, 2010, 117, 166-175.	2.2	14

#	Article	IF	CITATIONS
145	Raman microscopy and surfaceâ€enhanced Raman scattering (SERS) for in situ analysis of biofilms. Journal of Biophotonics, 2010, 3, 548-556.	2.3	45
146	Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy. Biotechnology and Bioengineering, 2010, 107, 172-181.	3.3	34
147	Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography. Biotechnology and Bioengineering, 2010, 107, 844-853.	3.3	128
148	Proteomic analysis of the outer membrane of <i>Protochlamydia amoebophila</i> elementary bodies. Proteomics, 2010, 10, 4363-4376.	2.2	13
149	Raman microspectroscopy reveals longâ€ŧerm extracellular activity of chlamydiae. Molecular Microbiology, 2010, 77, 687-700.	2.5	89
150	Crenarchaeol dominates the membrane lipids of <i>Candidatus</i> Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon. ISME Journal, 2010, 4, 542-552.	9.8	160
151	A â€~rare biosphere' microorganism contributes to sulfate reduction in a peatland. ISME Journal, 2010, 4, 1591-1602.	9.8	303
152	Double Labeling of Oligonucleotide Probes for Fluorescence <i>In Situ</i> Hybridization (DOPE-FISH) Improves Signal Intensity and Increases rRNA Accessibility. Applied and Environmental Microbiology, 2010, 76, 922-926.	3.1	160
153	Inclusion Membrane Proteins of <i>Protochlamydia amoebophila </i> UWE25 Reveal a Conserved Mechanism for Host Cell Interaction among the <i>Chlamydiae </i> Journal of Bacteriology, 2010, 192, 5093-5102.	2.2	33
154	The Genome of the Amoeba Symbiont " <i>Candidatus</i> Amoebophilus asiaticus―Reveals Common Mechanisms for Host Cell Interaction among Amoeba-Associated Bacteria. Journal of Bacteriology, 2010, 192, 1045-1057.	2.2	138
155	Label-Free in Situ SERS Imaging of Biofilms. Journal of Physical Chemistry B, 2010, 114, 10184-10194.	2.6	93
156	Acoustic correlates of information structure. Language and Cognitive Processes, 2010, 25, 1044-1098.	2.2	204
157	Structural and functional characterisation of the chlorite dismutase from the nitrite-oxidizing bacterium "Candidatus Nitrospira defluvii― Identification of a catalytically important amino acid residue. Journal of Structural Biology, 2010, 172, 331-342.	2.8	79
158	Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends in Microbiology, 2010, 18, 331-340.	7.7	431
159	A <i>Nitrospira</i> metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13479-13484.	7.1	732
160	Comprehensive in silico prediction and analysis of chlamydial outer membrane proteins reflects evolution and life style of the Chlamydiae. BMC Genomics, 2009, 10, 634.	2.8	27
161	Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Analytical and Bioanalytical Chemistry, 2009, 393, 197-206.	3.7	142
162	Isotope array analysis of <i>Rhodocyclales</i> uncovers functional redundancy and versatility in an activated sludge. ISME Journal, 2009, 3, 1349-1364.	9.8	86

#	Article	IF	Citations
163	High genetic similarity between two geographically distinct strains of the sulfur-oxidizing symbiont â€Â*Candidatus Thiobios zoothamnicoli¢€™. FEMS Microbiology Ecology, 2009, 67, 229-241.	2.7	35
164	Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfurâ€oxidizing prokaryotes. Environmental Microbiology, 2009, 11, 289-299.	3.8	162
165	Single-Cell Ecophysiology of Microbes as Revealed by Raman Microspectroscopy or Secondary Ion Mass Spectrometry Imaging. Annual Review of Microbiology, 2009, 63, 411-429.	7.3	270
166	Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): Investigations on EPS – Matrix. Water Research, 2009, 43, 63-76.	11.3	185
167	Focus, topic, and word order: A compositional view., 2009,, 53-86.		48
168	A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2134-2139.	7.1	626
169	Chlamydia-like bacteria in respiratory samples of community-acquired pneumonia patients. FEMS Microbiology Letters, 2008, 281, 198-202.	1.8	76
170	Microbial diversity and the genetic nature of microbial species. Nature Reviews Microbiology, 2008, 6, 431-440.	28.6	521
171	Diversity and mode of transmission of ammoniaâ€oxidizing archaea in marine sponges. Environmental Microbiology, 2008, 10, 1087-1094.	3.8	127
172	Environmental genomics reveals a functional chlorite dismutase in the nitriteâ€oxidizing bacterium â€~ <i>Candidatus</i> Nitrospira defluvii'. Environmental Microbiology, 2008, 10, 3043-3056.	3.8	102
173	probeCheck – a central resource for evaluating oligonucleotide probe coverage and specificity. Environmental Microbiology, 2008, 10, 2894-2898.	3.8	170
174	Quantification of Target Molecules Needed To Detect Microorganisms by Fluorescence In Situ Hybridization (FISH) and Catalyzed Reporter Deposition-FISH. Applied and Environmental Microbiology, 2008, 74, 5068-5077.	3.1	114
175	<i>Lawsonia intracellularis</i> Contains a Gene Encoding a Functional Rickettsia-Like ATP/ADP Translocase for Host Exploitation. Journal of Bacteriology, 2008, 190, 5746-5752.	2.2	37
176	Diversity of Bacterial Endosymbionts of Environmental <i>Acanthamoeba</i> Isolates. Applied and Environmental Microbiology, 2008, 74, 5822-5831.	3.1	92
177	probeBase–an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Research, 2007, 35, D800-D804.	14.5	421
178	Molecular strategies for studies of natural populations of sulphate-reducing microorganisms. , 2007, , 39-116.		12
179	Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. Journal of Microbiological Methods, 2007, 69, 523-528.	1.6	98
180	Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. Microbiology and Molecular Biology Reviews, 2007, 71, 295-347.	6.6	1,254

#	Article	IF	CITATIONS
181	Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME Journal, 2007, 1, 103-110.	9.8	239
182	Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environmental Microbiology, 2007, 9, 131-142.	3.8	233
183	An <i>Acanthamoeba</i> sp. containing two phylogenetically different bacterial endosymbionts. Environmental Microbiology, 2007, 9, 1604-1609.	3.8	45
184	Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environmental Microbiology, 2007, 9, 1878-1889.	3.8	305
185	Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiology Ecology, 2007, 60, 287-298.	2.7	117
186	Unravelling Microbial Communities with DNA-Microarrays: Challenges and Future Directions. Microbial Ecology, 2007, 53, 498-506.	2.8	95
187	Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis. Applied Microbiology and Biotechnology, 2007, 75, 237-248.	3.6	95
188	Association by movement: evidence from NPI-licensing. Natural Language Semantics, 2007, 14, 297-324.	0.6	44
189	The Lithoautotrophic Ammonia-Oxidizing Bacteria. , 2006, , 778-811.		121
190	Oxidation of Inorganic Nitrogen Compounds as an Energy Source. , 2006, , 457-495.		69
191	A Vista for Microbial Ecology and Environmental Biotechnology. Environmental Science & Emp; Technology, 2006, 40, 1096-1103.	10.0	118
192	<i>daime</i> , a novel image analysis program for microbial ecology and biofilm research. Environmental Microbiology, 2006, 8, 200-213.	3.8	565
193	Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environmental Microbiology, 2006, 8, 405-415.	3.8	143
194	Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environmental Microbiology, 2006, 8, 1487-1495.	3.8	209
195	Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila. Molecular Microbiology, 2006, 60, 1534-1545.	2.5	69
196	Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 2006, 440, 790-794.	27.8	1,075
197	Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Current Opinion in Biotechnology, 2006, 17, 83-91.	6.6	166
198	The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Current Opinion in Biotechnology, 2006, 17, 241-249.	6.6	405

#	Article	IF	CITATIONS
199	Non-Sulfate-Reducing, Syntrophic Bacteria Affiliated with Desulfotomaculum Cluster I Are Widely Distributed in Methanogenic Environments. Applied and Environmental Microbiology, 2006, 72, 2080-2091.	3.1	165
200	Wastewater treatment: a model system for microbial ecology. Trends in Biotechnology, 2006, 24, 483-489.	9.3	216
201	Cohn'sCrenothrixis a filamentous methane oxidizer with an unusual methane monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2363-2367.	7.1	229
202	" Candidatus Thiobios zoothamnicoli,―an Ectosymbiotic Bacterium Covering the Giant Marine Ciliate Zoothamnium niveum. Applied and Environmental Microbiology, 2006, 72, 2014-2021.	3.1	84
203	Oligonucleotide microarray for identification ofEnterococcusspecies. FEMS Microbiology Letters, 2005, 246, 133-142.	1.8	47
204	The community level: physiology and interactions of prokaryotes in the wilderness. Environmental Microbiology, 2005, 7, 483-485.	3.8	4
205	Evolutionary history of the genus Listeria and its virulence genes. Systematic and Applied Microbiology, 2005, 28, 1-18.	2.8	116
206	New Insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins. PLoS Biology, 2005, 3, e273.	5.6	218
207	Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 621-629.	1.7	88
208	â€~Candidatus Protochlamydia amoebophila', an endosymbiont of Acanthamoeba spp International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1863-1866.	1.7	88
209	Recovery of an environmental chlamydia strain from activated sludge by co-cultivation with Acanthamoeba sp Microbiology (United Kingdom), 2005, 151, 301-309.	1.8	73
210	Lateral Gene Transfer of Dissimilatory (Bi)Sulfite Reductase Revisited. Journal of Bacteriology, 2005, 187, 2203-2208.	2.2	153
211	Amoebae as Training Grounds for Intracellular Bacterial Pathogens. Applied and Environmental Microbiology, 2005, 71, 20-28.	3.1	452
212	16S rRNA Gene-Based Oligonucleotide Microarray for Environmental Monitoring of the Betaproteobacterial Order " Rhodocyclales ― Applied and Environmental Microbiology, 2005, 71, 1373-1386.	3.1	231
213	Biomarkers for In Situ Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria. Applied and Environmental Microbiology, 2005, 71, 1677-1684.	3.1	325
214	Functional Marker Genes for Identification of Sulfateâ€Reducing Prokaryotes. Methods in Enzymology, 2005, 397, 469-489.	1.0	86
215	Use of Stable-Isotope Probing, Full-Cycle rRNA Analysis, and Fluorescence In Situ Hybridization-Microautoradiography To Study a Methanol-Fed Denitrifying Microbial Community. Applied and Environmental Microbiology, 2004, 70, 588-596.	3.1	213
216	ATP/ADP Translocases: a Common Feature of Obligate Intracellular Amoebal Symbionts Related to Chlamydiae and Rickettsiae. Journal of Bacteriology, 2004, 186, 683-691.	2.2	162

#	Article	IF	CITATIONS
217	Discovery of the Novel Candidate Phylum "Poribacteria―in Marine Sponges. Applied and Environmental Microbiology, 2004, 70, 3724-3732.	3.1	275
218	Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 99-106.	1.7	117
219	A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae. Nature, 2004, 432, 622-625.	27.8	95
220	Chlamydial endocytobionts of free-living amoebae differentially affect the growth rate of their hosts. European Journal of Protistology, 2004, 40, 57-60.	1.5	11
221	Microarray and Functional Gene Analyses of Sulfate-Reducing Prokaryotes in Low-Sulfate, Acidic Fens Reveal Cooccurrence of Recognized Genera and Novel Lineages. Applied and Environmental Microbiology, 2004, 70, 6998-7009.	3.1	188
222	Illuminating the Evolutionary History of Chlamydiae. Science, 2004, 304, 728-730.	12.6	373
223	Bacterial Endosymbionts of Freeâ€living Amoebae ¹ . Journal of Eukaryotic Microbiology, 2004, 51, 509-514.	1.7	149
224	Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles, 2003, 7, 409-413.	2.3	56
225	Nucleic acid-based, cultivation-independent detection of Listeriaspp. and genotypes of L. monocytogenes. FEMS Immunology and Medical Microbiology, 2003, 35, 215-225.	2.7	54
226	Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environmental Microbiology, 2003, 5, 267-277.	3.8	96
227	Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm. Environmental Microbiology, 2003, 5, 355-369.	3.8	145
228	Community Analysis of Ammonia and Nitrite Oxidizers during Start-Up of Nitritation Reactors. Applied and Environmental Microbiology, 2003, 69, 3213-3222.	3.1	122
229	Filamentous "Epsilonproteobacteria―Dominate Microbial Mats from Sulfidic Cave Springs. Applied and Environmental Microbiology, 2003, 69, 5503-5511.	3.1	125
230	Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis. Water Research, 2003, 37, 2043-2052.	11.3	88
231	Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Current Opinion in Microbiology, 2003, 6, 302-309.	5.1	335
232	The Isotope Array, a New Tool That Employs Substrate-Mediated Labeling of rRNA for Determination of Microbial Community Structure and Function. Applied and Environmental Microbiology, 2003, 69, 6875-6887.	3.1	223
233	probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Research, 2003, 31, 514-516.	14.5	345
234	16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1485-1494.	1.7	257

#	Article	IF	CITATIONS
235	Molecular Evidence for a Uniform Microbial Community in Sponges from Different Oceans. Applied and Environmental Microbiology, 2002, 68, 4431-4440.	3.1	621
236	Detection and Differentiation of Chlamydiae by Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2002, 68, 4081-4089.	3.1	75
237	Abundance and Phylogenetic Affiliation of Iron Reducers in Activated Sludge as Assessed by Fluorescence In Situ Hybridization and Microautoradiography. Applied and Environmental Microbiology, 2002, 68, 4629-4636.	3.1	97
238	The Genus <i>Caedibacter</i> Comprises Endosymbionts of <i>Paramecium</i> spp. Related to the <i>Rickettsiales</i> (<i>Alphaproteobacteria</i>) and to <i>Francisella tularensis</i> () Tj ETQq0 0 0 rgBT /Over	lo c k:110 Tf	⁻ 5 0 06 0 17 Td (
239	Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment. Applied and Environmental Microbiology, 2002, 68, 5064-5081.	3.1	622
240	Modern scientific methods and their potential in wastewater science and technology. Water Research, 2002, 36, 370-393.	11.3	64
241	Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon. Water Research, 2002, 36, 469-481.	11.3	217
242	Various bacterial pathogens and symbionts infect the amoeba Dictyostelium discoideum. International Journal of Medical Microbiology, 2002, 291, 615-624.	3.6	105
243	The Microbial Community Composition of a Nitrifying-Denitrifying Activated Sludge from an Industrial Sewage Treatment Plant Analyzed by the Full-Cycle rRNA Approach. Systematic and Applied Microbiology, 2002, 25, 84-99.	2.8	338
244	Bacterial community composition and function in sewage treatment systems. Current Opinion in Biotechnology, 2002, 13, 218-227.	6.6	488
245	Origins and diversification of sulfate-respiring microorganisms. Antonie Van Leeuwenhoek, 2002, 81, 189-195.	1.7	59
246	Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek, 2002, 81, 665-680.	1.7	341
247	Community Structure and Activity Dynamics of Nitrifying Bacteria in a Phosphate-Removing Biofilm. Applied and Environmental Microbiology, 2001, 67, 1351-1362.	3.1	297
248	In Situ Characterization of Nitrospira -Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants. Applied and Environmental Microbiology, 2001, 67, 5273-5284.	3.1	718
249	Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes. Journal of Bacteriology, 2001, 183, 6028-6035.	2.2	309
250	Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Archives of Microbiology, 2001, 176, 170-177.	2.2	68
251	Members of the <i>Cytophaga–Flavobacterium–Bacteroides</i> phylum as intracellular bacteria of acanthamoebae: proposal of â€~ <i>Candidatus</i> Amoebophilus asiaticus'. Environmental Microbiology, 2001, 3, 440-449.	3.8	106
252	16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environmental Microbiology, 2001, 3, 450-459.	3.8	227

#	Article	IF	Citations
253	Microbiology and application of the anaerobic ammonium oxidation ($\hat{a}\in \hat{a}$ anammox $\hat{a}\in \hat{b}$) process. Current Opinion in Biotechnology, 2001, 12, 283-288.	6.6	534
254	Evidence for additional genus-level diversity of Chlamydialesin the environment. FEMS Microbiology Letters, 2001, 204, 71-74.	1.8	67
255	Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiology Ecology, 2001, 35, 305-312.	2.7	321
256	Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature, 2001, 411, 298-302.	27.8	196
257	Cultivation-Independent, Semiautomatic Determination of Absolute Bacterial Cell Numbers in Environmental Samples by Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2001, 67, 5810-5818.	3.1	173
258	[23] Assessment of metabolic potential of biofilm-associated bacteria. Methods in Enzymology, 2001, 336, 265-IN9.	1.0	4
259	Phylogenetic Analysis of and Oligonucleotide Probe Development for Eikelboom Type 021N Filamentous Bacteria Isolated from Bulking Activated Sludge. Applied and Environmental Microbiology, 2000, 66, 5043-5052.	3.1	118
260	Phylogeny of All Recognized Species of Ammonia Oxidizers Based on Comparative 16S rRNA and amoA Sequence Analysis: Implications for Molecular Diversity Surveys. Applied and Environmental Microbiology, 2000, 66, 5368-5382.	3.1	1,013
261	Phylogenetic Diversity among Geographically Dispersed <i>Chlamydiales</i> Endosymbionts Recovered from Clinical and Environmental Isolates of <i>Acanthamoeba</i> Spp. Applied and Environmental Microbiology, 2000, 66, 2613-2619.	3.1	132
262	Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge. Environmental Microbiology, 1999, 1, 125-135.	3.8	45
263	Novel bacterial endosymbionts of <i>Acanthamoeba</i> spp. related to the <i>Paramecium caudatum</i> symbiont <i>Caedibacter caryophilus</i> Environmental Microbiology, 1999, 1, 357-367.	3.8	189
264	Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques. FEMS Microbiology Ecology, 1998, 25, 205-215.	2.7	122
265	In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiology Letters, 1998, 160, 159-168.	1.8	5
266	In situ characterization of the microbial consortia active in two wastewater treatment plants. Water Research, 1994, 28, 1715-1723.	11.3	196
267	Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions. Systematic and Applied Microbiology, 1992, 15, 593-600.	2.8	1,875
268	How to be kind with prosody., 0,,.		1
269	NPI-Licensing and Focus Movement. Semantics and Linguistic Theory, 0, 15, 276.	0.0	3
270	Givenness and Locality. Semantics and Linguistic Theory, 0, 16, 295.	0.0	90

#	Article	IF	CITATIONS
271	Contrastive topics decomposed. Semantics and Pragmatics, 0, 5, .	0.6	28