
Maurizio Brunori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6125763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eraldo Antonini Lectures, 1983–2019. Biology Direct, 2022, 17, .	4.6	0
2	Still quoted after half a century. Molecular Aspects of Medicine, 2021, , 100989.	6.4	0
3	From Kuru to Alzheimer: A personal outlook. Protein Science, 2021, 30, 1776-1792.	7.6	7
4	Hidden kinetic traps in multidomain folding highlight the presence of a misfolded but functionally competent intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19963-19969.	7.1	16
5	Takashi Yonetani: A stellar biochemist, a man with dignity. The Roman connection. IUBMB Life, 2020, 72, 1839-1842.	3.4	0
6	Templated folding of intrinsically disordered proteins. Journal of Biological Chemistry, 2020, 295, 6586-6593.	3.4	44
7	Control of Oxygen Affinity in Mammalian Hemoglobins: Implications for a System Biology Description of the Respiratory Properties of the Red Blood Cell. Current Protein and Peptide Science, 2020, 21, 553-572.	1.4	5
8	Ligand pathways in neuroglobin revealed by low-temperature photodissociation and docking experiments. IUCrJ, 2019, 6, 832-842.	2.2	8
9	How Robust Is the Mechanism of Folding-Upon-Binding for an Intrinsically Disordered Protein?. Biophysical Journal, 2018, 114, 1889-1894.	0.5	39
10	Mechanism of Folding and Binding of the N-Terminal SH2 Domain from SHP2. Journal of Physical Chemistry B, 2018, 122, 11108-11114.	2.6	19
11	A Carboxylate to Amide Substitution That Switches Protein Folds. Angewandte Chemie, 2018, 130, 12977-12980.	2.0	0
12	A Carboxylate to Amide Substitution That Switches Protein Folds. Angewandte Chemie - International Edition, 2018, 57, 12795-12798.	13.8	4
13	Folding Mechanism of the SH3 Domain from Grb2. Journal of Physical Chemistry B, 2018, 122, 11166-11173.	2.6	9
14	The Folding Pathway of the KIX Domain. ACS Chemical Biology, 2017, 12, 1683-1690.	3.4	6
15	Analyzing the Folding and Binding Steps of an Intrinsically Disordered Protein by Protein Engineering. Biochemistry, 2017, 56, 3780-3786.	2.5	28
16	Towards a structural biology of the hydrophobic effect in protein folding. Scientific Reports, 2016, 6, 28285.	3.3	91
17	Molecular medicine – To be or not to be. Biophysical Chemistry, 2016, 214-215, 33-46.	2.8	4
18	A molecule for all seasons: The heme. Journal of Porphyrins and Phthalocyanines, 2016, 20, 134-149.	0.8	22

#	Article	IF	CITATIONS
19	Identification and Structural Characterization of an Intermediate in the Folding of the Measles Virus X Domain. Journal of Biological Chemistry, 2016, 291, 10886-10892.	3.4	18
20	Neuroglobin: From structure to function in health and disease. Molecular Aspects of Medicine, 2016, 52, 1-48.	6.4	91
21	Molecular Recognition by Templated Folding of an Intrinsically Disordered Protein. Scientific Reports, 2016, 6, 21994.	3.3	87
22	Frustration Sculpts the Early Stages of Protein Folding. Angewandte Chemie - International Edition, 2015, 54, 10867-10869.	13.8	11
23	Half a Century of Hemoglobin's Allostery. Biophysical Journal, 2015, 109, 1077-1079.	0.5	7
24	Variations on the theme: allosteric control in hemoglobin. FEBS Journal, 2014, 281, 633-643.	4.7	14
25	The mechanism of binding of the KIX domain to the mixed lineage leukemia protein and its allosteric role in the recognition of câ€Myb. Protein Science, 2014, 23, 962-969.	7.6	38
26	The kinetics of folding of frataxin. Physical Chemistry Chemical Physics, 2014, 16, 6391.	2.8	17
27	Understanding the frustration arising from the competition between function, misfolding, and aggregation in a globular protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14141-14146.	7.1	43
28	The centennial of X-ray diffraction (1912–2012). Rendiconti Lincei, 2013, 24, 1-5.	2.2	1
29	Hemoglobin Allostery: New Views on Old Players. Journal of Molecular Biology, 2013, 425, 1515-1526.	4.2	12
30	The Mitochondrial Italian Human Proteome Project Initiative (mt-HPP). Molecular BioSystems, 2013, 9, 1984-92.	2.9	10
31	The folding pathway of a functionally competent C-terminal domain of nucleophosmin: Protein stability and denatured state residual structure. Biochemical and Biophysical Research Communications, 2013, 435, 64-68.	2.1	7
32	Structure of the transition state for the binding of c-Myb and KIX highlights an unexpected order for a disordered system. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14942-14947.	7.1	99
33	Structure of Nucleophosmin DNA-binding Domain and Analysis of Its Complex with a G-quadruplex Sequence from the c-MYC Promoter. Journal of Biological Chemistry, 2012, 287, 26539-26548.	3.4	54
34	The Monod-Wyman-Changeux allosteric model accounts for the quaternary transition dynamics in wild type and a recombinant mutant human hemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14894-14899.	7.1	33
35	The BOHR effect before Perutz. Biochemistry and Molecular Biology Education, 2012, 40, 297-299.	1.2	3
36	Reassessing the folding of the KIX domain: Evidence for a twoâ€state mechanism. Protein Science, 2012, 21, 1775-1779.	7.6	2

#	Article	IF	CITATIONS
37	Crystal structure of Plasmodium falciparum thioredoxin reductase, a validated drug target. Biochemical and Biophysical Research Communications, 2012, 425, 806-811.	2.1	25
38	Morphogenesis of a protein: folding pathways and the energy landscape1. Biochemical Society Transactions, 2012, 40, 429-432.	3.4	10
39	A folding-after-binding mechanism describes the recognition between the transactivation domain of c-Myb and the KIX domain of the CREB-binding protein. Biochemical and Biophysical Research Communications, 2012, 428, 205-209.	2.1	71
40	Folding pathways of proteins with increasing degree of sequence identities but different structure and function. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17772-17776.	7.1	25
41	Moonlighting by Different Stressors: Crystal Structure of the Chaperone Species of a 2-Cys Peroxiredoxin. Structure, 2012, 20, 429-439.	3.3	102
42	On the mechanism and rate of gold incorporation into thiol-dependent flavoreductases. Journal of Inorganic Biochemistry, 2012, 108, 105-111.	3.5	48
43	GB1 Is Not a Two-State Folder: Identification and Characterization of an On-Pathway Intermediate. Biophysical Journal, 2011, 101, 2053-2060.	0.5	29
44	Observation of fast release of NO from ferrous <i>d</i> 1 haem allows formulation of a unified reaction mechanism for cytochrome <i>cd</i> 1 nitrite reductases. Biochemical Journal, 2011, 435, 217-225.	3.7	28
45	Hemoglobin allostery: Variations on the theme. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1262-1272.	1.0	31
46	Allosteric cooperativity in respiratory proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1251-1252.	1.0	2
47	Neuroglobin–prion protein interaction: what's the function?. Journal of Peptide Science, 2011, 17, 387-391.	1.4	14
48	Structural and functional characterization of <i>Schistosoma mansoni</i> Thioredoxin. Protein Science, 2011, 20, 1069-1076.	7.6	23
49	Allostery turns 50: Is the vintage yet attractive?. Protein Science, 2011, 20, 1097-1099.	7.6	8
50	Macromolecular Bases of Antischistosomal Therapy. Current Topics in Medicinal Chemistry, 2011, 11, 2012-2028.	2.1	19
51	The Denatured State Dictates the Topology of Two Proteins with Almost Identical Sequence but Different Native Structure and Function. Journal of Biological Chemistry, 2011, 286, 3863-3872.	3.4	37
52	Sequence-specific Long Range Networks in PSD-95/Discs Large/ZO-1 (PDZ) Domains Tune Their Binding Selectivity. Journal of Biological Chemistry, 2011, 286, 27167-27175.	3.4	62
53	1960 Annus mirabilis: the birth of structural biology. Rendiconti Lincei, 2010, 21, 335-342.	2.2	2
54	Myoglobin strikes back. Protein Science, 2010, 19, 195-201.	7.6	35

4

#	Article	IF	CITATIONS
55	Combining crystallography and molecular dynamics: The case of <i>Schistosoma mansoni</i> phospholipid glutathione peroxidase. Proteins: Structure, Function and Bioinformatics, 2010, 78, 259-270.	2.6	30
56	Structural and functional characterization of CcmG from <i>Pseudomonas aeruginosa</i> , a key component of the bacterial cytochrome c maturation apparatus. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2213-2221.	2.6	19
57	Structural characterization of a misfolded intermediate populated during the folding process of a PDZ domain. Nature Structural and Molecular Biology, 2010, 17, 1431-1437.	8.2	53
58	Deciphering the folding transition state structure and denatured state properties of Nucleophosmin C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5447-5452.	7.1	33
59	Mapping the Catalytic Cycle of Schistosoma mansoni Thioredoxin Glutathione Reductase by X-ray Crystallography. Journal of Biological Chemistry, 2010, 285, 32557-32567.	3.4	63
60	Nucleophosmin C-terminal Leukemia-associated Domain Interacts with G-rich Quadruplex Forming DNA. Journal of Biological Chemistry, 2010, 285, 37138-37149.	3.4	54
61	The Folding Mechanism of c-Type Cytochromes. , 2010, , 13-36.		0
62	Inhibition of Schistosoma mansoni Thioredoxin-glutathione Reductase by Auranofin. Journal of Biological Chemistry, 2009, 284, 28977-28985.	3.4	184
63	Folding mechanism of the Câ€ŧerminal domain of nucleophosmin: residual structure in the denatured state and its pathophysiological significance. FASEB Journal, 2009, 23, 2360-2365.	0.5	31
64	Pattern of cavities in globins: The case of human hemoglobin. Biopolymers, 2009, 91, 1097-1107.	2.4	57
65	Nitrite reduction: a ubiquitous function from a preâ€aerobic past. BioEssays, 2009, 31, 885-891.	2.5	13
66	Distinguishing between Smooth and Rough Free Energy Barriers in Protein Folding. Biochemistry, 2009, 48, 11825-11830.	2.5	10
67	Failure of apoptosis-inducing factor to act as neuroglobin reductase. Biochemical and Biophysical Research Communications, 2009, 390, 121-124.	2.1	13
68	Intramolecular Electron Transfer in Pseudomonas aeruginosa cd1 Nitrite Reductase: Thermodynamics and Kinetics. Biophysical Journal, 2009, 96, 2849-2856.	0.5	29
69	The Structure of Neuroglobin at High Xe and Kr Pressure Reveals Partial Conservation of Globin Internal Cavities. Biophysical Journal, 2009, 97, 1700-1708.	0.5	32
70	Engineered Symmetric Connectivity of Secondary Structure Elements Highlights Malleability of Protein Folding Pathways. Journal of the American Chemical Society, 2009, 131, 11727-11733.	13.7	25
71	Mechanisms of protein folding. European Biophysics Journal, 2008, 37, 721-728.	2.2	20
72	Glutathione reductase and thioredoxin reductase at the crossroad: The structure of <i>Schistosoma mansoni</i> thioredoxin glutathione reductase. Proteins: Structure, Function and Bioinformatics, 2008, 72, 936-945.	2.6	63

#	Article	IF	CITATIONS
73	Is neuroglobin a signal transducer?. IUBMB Life, 2008, 60, 410-413.	3.4	13
74	Fast folding kinetics and stabilization of apo ytochrome <i>c</i> . FEBS Letters, 2008, 582, 1003-1007.	2.8	7
75	Molecular Dynamics Simulation of the Neuroglobin Crystal: Comparison with the Simulation in Solution. Biophysical Journal, 2008, 95, 4157-4162.	0.5	26
76	Kinetic Characterization of the Escherichia coli Nitric Oxide Reductase Flavorubredoxin. Methods in Enzymology, 2008, 437, 47-62.	1.0	10
77	NO sensing in Pseudomonas aeruginosa: Structure of the Transcriptional Regulator DNR. Journal of Molecular Biology, 2008, 378, 1002-1015.	4.2	80
78	An X-ray diffraction and X-ray absorption spectroscopy joint study of neuroglobin. Archives of Biochemistry and Biophysics, 2008, 475, 7-13.	3.0	50
79	Neuroglobin: Enzymatic reduction and oxygen affinity. Biochemical and Biophysical Research Communications, 2008, 367, 893-898.	2.1	43
80	Ancient hemes for ancient catalysts. Plant Signaling and Behavior, 2008, 3, 135-136.	2.4	9
81	The O2-scavenging Flavodiiron Protein in the Human Parasite Giardia intestinalis. Journal of Biological Chemistry, 2008, 283, 4061-4068.	3.4	107
82	Folding and Misfolding in a Naturally Occurring Circularly Permuted PDZ Domain. Journal of Biological Chemistry, 2008, 283, 8954-8960.	3.4	25
83	The folding pathway of an engineered circularly permuted PDZ domain. Protein Engineering, Design and Selection, 2008, 21, 155-160.	2.1	20
84	New insights into the activity of <i>Pseudomonas aeruginosa cd</i> 1 nitrite reductase. Biochemical Society Transactions, 2008, 36, 1155-1159.	3.4	17
85	Myoglobin Strikes Back. , 2008, , 183-189.		0
86	An On-pathway Intermediate in the Folding of a PDZ Domain. Journal of Biological Chemistry, 2007, 282, 8568-8572.	3.4	42
87	The Three-dimensional Structure of Two Redox States of Cyclophilin A from Schistosoma mansoni. Journal of Biological Chemistry, 2007, 282, 24851-24857.	3.4	29
88	Fast Dissociation of Nitric Oxide from Ferrous Pseudomonas aeruginosa cd1 Nitrite Reductase. Journal of Biological Chemistry, 2007, 282, 14761-14767.	3.4	46
89	A Strategic Protein in Cytochrome c Maturation. Journal of Biological Chemistry, 2007, 282, 27012-27019.	3.4	35
90	Plasticity of the protein folding landscape: Switching between on- and off-pathway intermediates. Archives of Biochemistry and Biophysics, 2007, 466, 172-176.	3.0	5

#	Article	IF	CITATIONS
91	Redox control of fast ligand dissociation from Escherichia coli cytochrome bd. Biochemical and Biophysical Research Communications, 2007, 355, 97-102.	2.1	79
92	Nitrite controls the release of nitric oxide in Pseudomonas aeruginosa cd1 nitrite reductase. Biochemical and Biophysical Research Communications, 2007, 363, 662-666.	2.1	20
93	Time-resolved methods in biophysics. 6. Time-resolved Laue crystallography as a tool to investigate photo-activated protein dynamics. Photochemical and Photobiological Sciences, 2007, 6, 1047-1056.	2.9	42
94	A PDZ domain recapitulates a unifying mechanism for protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 128-133.	7.1	69
95	Molecular Dynamics Simulation of Deoxy and Carboxy Murine Neuroglobin in Water. Biophysical Journal, 2007, 93, 434-441.	0.5	42
96	Identification and characterization of protein folding intermediates. Biophysical Chemistry, 2007, 128, 105-113.	2.8	69
97	Kinetics of electron transfer from NADH to the Escherichia coli nitric oxide reductase flavorubredoxin. FEBS Journal, 2007, 274, 677-686.	4.7	15
98	Neuroglobin, seven years after. Cellular and Molecular Life Sciences, 2007, 64, 1259-1268.	5.4	94
99	Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochromebdterminal oxidase. FEBS Letters, 2006, 580, 4823-4826.	2.8	46
100	Nitric oxide and the respiratory enzyme. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1144-1154.	1.0	66
101	Probing the Mechanism of GSH Activation in Schistosoma haematobium Glutathione-S-transferase by Site-directed Mutagenesis and X-ray Crystallography. Journal of Molecular Biology, 2006, 360, 678-689.	4.2	20
102	The Structural and Functional Properties of Hemoglobin and their Relevance for a Hemoglobin-Based Blood Substitute. , 2006, , 327-340.		1
103	Large-scale purification and crystallization of the endoribonuclease XendoU: troubleshooting with His-tagged proteins. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 298-301.	0.7	19
104	Critical role of His369 in the reactivity of Pseudomonas aeruginosa cytochrome cd1nitrite reductase with oxygen. FEBS Journal, 2006, 273, 4495-4503.	4.7	3
105	Hemoglobin is an honorary enzyme. Rendiconti Lincei, 2006, 17, 51-58.	2.2	0
106	Demonstration of Long-Range Interactions in a PDZ Domain by NMR, Kinetics, and Protein Engineering. Structure, 2006, 14, 1801-1809.	3.3	103
107	The Allosteric Properties of Hemoglobin: Insights from Natural and Site Directed Mutants. Current Protein and Peptide Science, 2006, 7, 17-45.	1.4	46
108	Unveiling a Hidden Folding Intermediate in c-Type Cytochromes by Protein Engineering. Journal of Biological Chemistry, 2006, 281, 9331-9336.	3.4	29

#	Article	IF	CITATIONS
109	A globin for the brain. FASEB Journal, 2006, 20, 2192-2197.	0.5	87
110	Extended subnanosecond structural dynamics of myoglobin revealed by Laue crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4924-4929.	7.1	111
111	The structure of the endoribonuclease XendoU: From small nucleolar RNA processing to severe acute respiratory syndrome coronavirus replication. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12365-12370.	7.1	51
112	Insights into the Catalytic Mechanism of Glutathione S-Transferase: The Lesson from Schistosoma haematobium. Structure, 2005, 13, 1241-1246.	3.3	46
113	Cytochrome oxidase, ligands and electrons. Journal of Inorganic Biochemistry, 2005, 99, 324-336.	3.5	119
114	An Obligatory Intermediate in the Folding Pathway of Cytochromec552 from Hydrogenobacterthermophilus. Journal of Biological Chemistry, 2005, 280, 25729-25734.	3.4	68
115	Neuroglobin, nitric oxide, and oxygen: Functional pathways and conformational changes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8483-8488.	7.1	233
116	Kinetic folding mechanism of PDZ2 from PTP-BL. Protein Engineering, Design and Selection, 2005, 18, 389-395.	2.1	50
117	Nitric oxide, cytochromecoxidase and myoglobin: Competition and reaction pathways. FEBS Letters, 2005, 579, 2528-2532.	2.8	34
118	Molecular Dynamics Simulation of Sperm Whale Myoglobin: Effects of Mutations and Trapped CO on the Structure and Dynamics of Cavities. Biophysical Journal, 2005, 89, 465-474.	0.5	93
119	1H-NMR Study of the Effect of Temperature through Reversible Unfolding on the Heme Pocket Molecular Structure and Magnetic Properties of Aplysia limacina Cyano-Metmyoglobin. Biophysical Journal, 2005, 89, 4149-4158.	0.5	7
120	The structure of carbonmonoxy neuroglobin reveals a heme-sliding mechanism for control of ligand affinity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17351-17356.	7.1	182
121	A common folding mechanism in the cytochrome family. Trends in Biochemical Sciences, 2004, 29, 535-541.	7.5	48
122	NO Production by Pseudomonas aeruginosa cd1 Nitrite Reductase. IUBMB Life, 2004, 55, 617-621.	3.4	19
123	Nitric Oxide and Mitochondrial Complex IV. IUBMB Life, 2004, 55, 605-611.	3.4	43
124	The structure of murine neuroglobin: Novel pathways for ligand migration and binding. Proteins: Structure, Function and Bioinformatics, 2004, 56, 85-92.	2.6	170
125	Structural dynamics of myoglobin: an infrared kinetic study of ligand migration in mutants YQR and YQRF. Biophysical Chemistry, 2004, 109, 41-58.	2.8	16
126	Proton Uptake upon Anaerobic Reduction of theParacoccus denitrificansCytochromecOxidase:Â A Kinetic Investigation of the K354M and D124N Mutantsâ€. Biochemistry, 2004, 43, 2957-2963.	2.5	20

#	Article	IF	CITATIONS
127	Folding ofAplysia limacinaApomyoglobin Involves an Intermediate in Common with Other Evolutionarily Distant Globinsâ€. Biochemistry, 2004, 43, 230-236.	2.5	14
128	Schistosoma mansoniFatty Acid Binding Protein:Â Specificity and Functional Control as Revealed by Crystallographic Structureâ€,‡. Biochemistry, 2004, 43, 13000-13011.	2.5	29
129	Extended Molecular Dynamics Simulation of the Carbon Monoxide Migration in Sperm Whale Myoglobin. Biophysical Journal, 2004, 86, 3855-3862.	0.5	129
130	Control of cytochrome c oxidase activity by nitric oxide. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1655, 365-371.	1.0	91
131	The structural dynamics of myoglobin. Journal of Structural Biology, 2004, 147, 223-234.	2.8	81
132	Kinetics of NO and O2 binding to a maleimide poly(ethylene glycol)-conjugated human haemoglobin. Biochemical Journal, 2004, 382, 183-189.	3.7	38
133	Roles for holes: are cavities in proteins mere packing defects?. Italian Journal of Biochemistry, 2004, 53, 46-52.	0.3	4
134	Nitric oxide and cytochrome oxidase: reaction mechanisms from the enzyme to the cell. Free Radical Biology and Medicine, 2003, 34, 509-520.	2.9	87
135	Construction and characterization of a chimeric myoglobin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1645, 139-145.	2.3	1
136	Analysis of the effect of microgravity on protein crystal quality: the case of a myoglobin triple mutant. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 982-988.	2.5	13
137	Parallel Pathways in Cytochrome c551 Folding. Journal of Molecular Biology, 2003, 330, 1145-1152.	4.2	50
138	Crystal Structure of the 28 kDa GlutathioneS-Transferase fromSchistosoma haematobiumâ€. Biochemistry, 2003, 42, 10084-10094.	2.5	45
139	Exploring the Cytochrome c Folding Mechanism. Journal of Biological Chemistry, 2003, 278, 41136-41140.	3.4	38
140	Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8704-8709.	7.1	195
141	Structural Dynamics of Myoglobin. Journal of Biological Chemistry, 2002, 277, 11636-11644.	3.4	69
142	Controlling Ligand Binding in Myoglobin by Mutagenesis. Journal of Biological Chemistry, 2002, 277, 7509-7519.	3.4	101
143	Nitric Oxide Reacts with the Single-electron Reduced Active Site of Cytochrome c Oxidase. Journal of Biological Chemistry, 2002, 277, 22402-22406.	3.4	31
144	A Novel Type of Nitric-oxide Reductase. Journal of Biological Chemistry, 2002, 277, 25273-25276.	3.4	176

#	Article	IF	CITATIONS
145	Redox-Linked Protonation of Cytochrome c Oxidase:  The Effect of Chloride Bound to CuB. Biochemistry, 2002, 41, 13046-13052.	2.5	26
146	Cyanide Binding to cd1 Nitrite Reductase from Pseudomonas aeruginosa: Role of the Active-Site His369 in Ligand Stabilization. Biochemical and Biophysical Research Communications, 2002, 291, 1-7.	2.1	19
147	Pseudomonas aeruginosa cytochrome C551: probing the role of the hydrophobic patch in electron transfer. Journal of Inorganic Biochemistry, 2002, 88, 353-361.	3.5	38
148	Cytochrome c551 as a model system for protein folding. Biophysical Chemistry, 2002, 100, 409-419.	2.8	7
149	Cavities and packing defects in the structural dynamics of myoglobin. EMBO Reports, 2001, 2, 674-679.	4.5	165
150	Snapshots of protein folding. A study on the multiple transition state pathway of cytochrome c551 from Pseudomonas aeruginosa. Journal of Molecular Biology, 2001, 309, 1177-1187.	4.2	30
151	Domain Swing Upon His to Ala Mutation in Nitrite Reductase of Pseudomonas aeruginosa. Journal of Molecular Biology, 2001, 312, 541-554.	4.2	22
152	Photochemically Induced Electron Transfer. Methods, 2001, 24, 139-152.	3.8	18
153	Does myoglobin protectTrypanosoma cruzifrom the antiparasitic effects of nitric oxide?1. FEBS Letters, 2001, 501, 103-105.	2.8	26
154	Binding of NO and CO to the d1 Heme of cd1 Nitrite Reductase from Pseudomonas aeruginosa. Biochemistry, 2001, 40, 10774-10781.	2.5	26
155	Control of Heme Reactivity by Diffusion:Â Structural Basis and Functional Characterization in Hemoglobin Mutantsâ€,â€j. Biochemistry, 2001, 40, 14449-14458.	2.5	12
156	The cytochrome <i>cbb</i> ₃ from <i>Pseudomonas stutzeri</i> displays nitric oxide reductase activity. FEBS Journal, 2001, 268, 6486-6491.	0.2	110
157	Refolding kinetics of cytochrome c551reveals a mechanistic difference between urea and guanidine. Protein Science, 2001, 10, 1685-1688.	7.6	23
158	Article Myoglobin: a pseudoâ€enzymatic scavenger of nitric oxide. Biochemistry and Molecular Biology Education, 2001, 29, 183-185.	1.2	4
159	Nitric oxide, cytochrome-c oxidase and myoglobin. Trends in Biochemical Sciences, 2001, 26, 21-23.	7.5	186
160	Nitric oxide moves myoglobin centre stage. Trends in Biochemical Sciences, 2001, 26, 209-210.	7.5	207
161	Myoglobin: a pseudo-enzymatic scavenger of nitric oxide. Biochemistry and Molecular Biology Education, 2001, 29, 183-185.	1.2	7
162	Fast Coordination Changes in Cytochrome c Do Not Necessarily Imply Folding. Journal of Biological Chemistry, 2001, 276, 41073-41078.	3.4	29

#	Article	IF	CITATIONS
163	Structural dynamics of myoglobin. Biophysical Chemistry, 2000, 86, 221-230.	2.8	73
164	Solution 1H NMR Study of the Influence of Distal Hydrogen Bonding and N Terminus Acetylation on the Active Site Electronic and Molecular Structure of Aplysia limacinaCyanomet Myoglobin. Journal of Biological Chemistry, 2000, 275, 742-751.	3.4	12
165	Engineering His(E7) Affects the Control of Heme Reactivity in Aplysia limacina Myoglobin. Biochemical and Biophysical Research Communications, 2000, 269, 58-63.	2.1	4
166	Nitric Oxide and Cytochrome c Oxidase: Mechanisms of Inhibition and NO Degradation. Biochemical and Biophysical Research Communications, 2000, 274, 183-187.	2.1	155
167	A new folding intermediate of apomyoglobin from Aplysia limacina: stepwise formation of a molten globule11Edited by P. E. Wright. Journal of Molecular Biology, 2000, 297, 1231-1244.	4.2	13
168	Reaction of Nitric Oxide with the Turnover Intermediates of CytochromecOxidase: Reaction Pathway and Functional Effectsâ€. Biochemistry, 2000, 39, 15446-15453.	2.5	74
169	Studies onPseudomonas aeruginosacd1nitrite reductase: The association and dissociation reactions of the d1-heme. Israel Journal of Chemistry, 2000, 40, 27-33.	2.3	2
170	Modulation of mitochondrial respiration by nitric oxide: investigation by single cell fluorescence microscopy. FASEB Journal, 1999, 13, 191-197.	0.5	71
171	Does the Reduction of c Heme Trigger the Conformational Change of Crystalline Nitrite Reductase?. Journal of Biological Chemistry, 1999, 274, 14997-15004.	3.4	31
172	Hemoglobin is an honorary enzyme. Trends in Biochemical Sciences, 1999, 24, 158-161.	7.5	60
173	Does picosecond protein dynamics have survival value?. Trends in Biochemical Sciences, 1999, 24, 253-255.	7.5	26
174	Kinetic Properties of ba3 Oxidase from Thermus thermophilus:  Effect of Temperature. Biochemistry, 1999, 38, 1057-1065.	2.5	78
175	Electron Transfer Kinetics of caa3 Oxidase from Bacillusstearothermophilus: A Hypothesis for Thermophilicity. Biophysical Journal, 1999, 76, 438-442.	0.5	1
176	Internal Electron Transfer and Structural Dynamics of cd1 Nitrite Reductase Revealed by Laser CO Photodissociation. Biochemistry, 1999, 38, 7556-7564.	2.5	24
177	Folding mechanism of Pseudomonas aeruginosa cytochrome c 551 : role of electrostatic interactions on the hydrophobic collapse and transition state properties 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 289, 1459-1467.	4.2	25
178	Modulation of ligand binding in engineered human hemoglobin distal pocket. Journal of Molecular Biology, 1999, 290, 515-524.	4.2	27
179	Transient Spectroscopy of the Reaction between Cytochrome c Oxidase and Nitric Oxide. , 1999, , 219-232.		0
180	Kinetic control of internal electron transfer in cytochrome c oxidase. BioFactors, 1998, 8, 191-193.	5.4	2

#	Article	IF	CITATIONS
181	Cytochrome-c-binding site on cytochrome oxidase in Paracoccus denitrificans. FEBS Journal, 1998, 251, 367-373.	0.2	85
182	Paracoccus denitrificans cytochrome c oxidase: a kinetic study on the two- and four-subunit complexes. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 393-403.	1.0	9
183	Equilibrium unfolding of a small bacterial cytochrome, cytochrome c 551 from Pseudomonas aeruginosa. FEBS Letters, 1998, 425, 385-390.	2.8	17
184	Electron entry in a CuAmutant of cytochromecoxidase fromParacoccus denitrificans. Conclusive evidence on the initial electron entry metal center. FEBS Letters, 1998, 434, 322-324.	2.8	25
185	Temperature-Jump and Potentiometric Studies on Recombinant Wild Type and Y143F and Y254F Mutants ofSaccharomyces cerevisiaeFlavocytochromeb2:Â Role of the Driving Force in Intramolecular Electron Transfer Kineticsâ€,â€j. Biochemistry, 1998, 37, 12761-12771.	2.5	29
186	Conformational Changes Occurring upon Reduction and NO Binding in Nitrite Reductase fromPseudomonas aeruginosaâ€,‡. Biochemistry, 1998, 37, 13987-13996.	2.5	88
187	Cytochrome c Oxidase Does Not Catalyze the Anaerobic Reduction of NO. Biochemical and Biophysical Research Communications, 1998, 245, 459-465.	2.1	65
188	Unfolding of apomyoglobin from Aplysia limacina : the effect of salt and ph on the cooperativity of folding 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 275, 133-148.	4.2	33
189	Tryptophan 121 of Subunit II Is the Electron Entry Site to Cytochrome-c Oxidase in Paracoccus denitrificans. Journal of Biological Chemistry, 1998, 273, 5132-5136.	3.4	93
190	Chloride Bound to Oxidized Cytochrome c Oxidase Controls the Reaction with Nitric Oxide. Journal of Biological Chemistry, 1998, 273, 32475-32478.	3.4	43
191	Internal Electron Transfer in Cu-Heme Oxidases. Journal of Biological Chemistry, 1997, 272, 19870-19874.	3.4	26
192	The Unusual Stability of Saporin, a Candidate for the Synthesis of Immunotoxins. Biochemical and Biophysical Research Communications, 1997, 234, 129-132.	2.1	62
193	Mutagenesis of nitrite reductase fromPseudomonas aeruginosa: tyrosine-10 in the c heme domain is not involved in catalysis1. FEBS Letters, 1997, 412, 365-369.	2.8	39
194	Identification of the prion protein allotypes which accumulate in the brain of sporadic and familial Creutzfeldt-Jakob disease patients. Nature Medicine, 1997, 3, 521-525.	30.7	58
195	N-terminal arm exchange is observed in the 2.15 Ã crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa. Structure, 1997, 5, 1157-1171.	3.3	142
196	Electron-Transfer Properties of Pseudomonas Aeruginosa [Lys44, Glu64]azurin. FEBS Journal, 1997, 247, 322-331.	0.2	20
197	Functional Properties of the Quinol Oxidase from Acidianus ambivalens and the Possible Catalytic Role of its Electron Donor. Studies on the Membrane-Integrated and Purified Enzyme. FEBS Journal, 1997, 250, 383-388.	0.2	29
198	A saporinâ€insulin conjugate: Synthesis and biochemical characterization. Natural Toxins, 1996, 4, 156-162.	1.0	6

#	Article	IF	CITATIONS
199	Aplysia limacina myoglobin cDNA cloning: an alternative mechanism of oxygen stabilization as studied by active-site mutagenesis. Biochemical Journal, 1996, 314, 83-90.	3.7	35
200	Kinetic and spectroscopic properties of the cyanide complexes of ferrous haemoglobins I and IV from trout blood. Biochemical Journal, 1996, 314, 533-540.	3.7	20
201	Probing the high-affinity site of beef heart cytochrome c oxidase by cross-linking. Biochemical Journal, 1996, 315, 909-916.	3.7	10
202	Electron transfer in zinc-reconstituted nitrite reductase from Pseudomonas aeruginosa. Biochemical Journal, 1996, 319, 407-410.	3.7	12
203	Isolation and characterization of the d1 domain of Pseudomonas aeruginosa nitrite reductase. Journal of Inorganic Biochemistry, 1996, 62, 77-87.	3.5	5
204	The 3 Terminal Oxidase of. Journal of Biological Chemistry, 1996, 271, 13987-13992.	3.4	4
205	On the Mechanism of Inhibition of Cytochrome c Oxidase by Nitric Oxide. Journal of Biological Chemistry, 1996, 271, 33404-33408.	3.4	129
206	Probing the α1β2 Interface of Human Hemoglobin by Mutagenesis. Journal of Biological Chemistry, 1996, 271, 12472-12480.	3.4	21
207	Structure and function of a molecular machine: cytochrome c oxidase. Biophysical Chemistry, 1995, 54, 1-33.	2.8	101
208	A chimeric saporinâ€ŧransferrin conjugate compared to ricin toxin: role of the carrier in intracellular transport and toxicity. FASEB Journal, 1995, 9, 1220-1225.	0.5	36
209	Interactions among residues CD3, E7, E10, and E11 in myoglobins: Attempts to simulate the ligand-binding properties of Aplysia myoglobin. Biochemistry, 1995, 34, 8715-8725.	2.5	40
210	Control of electron transfer in metalloproteins. Biosensors and Bioelectronics, 1994, 9, 633-636.	10.1	12
211	Mini-myoglobin: native-like folding of the NO-derivative. BBA - Proteins and Proteomics, 1994, 1204, 28-32.	2.1	13
212	Cyanide dissociation from the hemoglobin of Parascaris equorum. BBA - Proteins and Proteomics, 1994, 1205, 252-257.	2.1	11
213	Crystallization and Preliminary X-ray Analysis of a New Crystal form of Nitrite Reductase from Pseudomonas aeruginosa. Journal of Molecular Biology, 1994, 243, 347-350.	4.2	8
214	Intracellular dynamics of ricin followed by fluorescence microscopy on living cells reveals a rapid accumulation of the dimeric toxin in the Golgi apparatus. FEBS Letters, 1994, 344, 99-104.	2.8	10
215	Engineering Ascaris hemoglobin oxygen affinity in sperm whale myoglobin: role of tyrosine B10. FEBS Letters, 1994, 352, 63-66.	2.8	37
216	[5] Optical measurements of quaternary structural changes in hemoglobin. Methods in Enzymology, 1994, 232, 56-71.	1.0	19

#	Article	IF	CITATIONS
217	A new point mutation of the prion protein gene in Creutzfeldtâ€Jakob disease. Annals of Neurology, 1993, 34, 802-807.	5.3	104
218	Molecular bases for heme:ligand recognition in sperm whale (Physeter Catodon) andAplysia limacine myoglobin. Rendiconti Lincei, 1993, 4, 65-73.	2.2	5
219	Crystal structure of a distal site double mutant of sperm whale myoglobin at 1.6 Ã resolution. FEBS Letters, 1993, 320, 13-16.	2.8	10
220	X-ray Crystal Structure of Ferric Aplysia limacina Myoglobin in Different Liganded States. Journal of Molecular Biology, 1993, 233, 498-508.	4.2	78
221	Liposomal and Mitochondrial Cytochrome Oxidase Display Similar Bioenergetic Properties. Journal of Liposome Research, 1993, 3, 589-598.	3.3	0
222	Ligand binding and slow structural changes in chlorocruorin from Spirographis spallanzanii. Biochemistry, 1993, 32, 7635-7643.	2.5	2
223	Structural and functional characterization of sperm whale myoglobin mutants: Role of arginine (E10) in ligand stabilization. Biochemistry, 1993, 32, 6041-6049.	2.5	34
224	Spectral analysis of cytochromes in rat heart myocytes: Transient and steady-state photodiode array spectrophotometry measurements. Archives of Biochemistry and Biophysics, 1992, 299, 8-14.	3.0	11
225	A ribosomal protein is specifically recognized by saporin, a plant toxin which inhibits protein synthesis. FEBS Letters, 1992, 298, 145-148.	2.8	27
226	The oxygen reactive species of cytochrome-c-oxidase: An alternate view. FEBS Letters, 1992, 314, 191-194.	2.8	16
227	Solution 1H nuclear magnetic resonance determination of hydrogen bonding of the E10 (66) Arg side-chain to the bound ligand in Aplysia cyano-met myoglobin. Journal of Molecular Biology, 1992, 224, 891-897.	4.2	39
228	Electrochemical behaviour of horse heart cytochrome c and microperoxidase at a gold electrode chemically modified with sulphur-containing compounds. Bioelectrochemistry, 1992, 29, 177-184.	1.0	18
229	Dynamics of the quaternary conformational change in trout hemoglobin. Biochemistry, 1991, 30, 6583-6598.	2.5	41
230	Control and recognition of anionic ligands in myoglobin. FEBS Letters, 1991, 282, 281-284.	2.8	38
231	Mini-myoglobin. Journal of Molecular Biology, 1991, 222, 637-643.	4.2	11
232	Binding mode of azide to ferricAplysia limacina myoglobin. Crystallographic analysis at 1.9 Ã resolution. Journal of Molecular Recognition, 1991, 4, 1-6.	2.1	30
233	Aplysia limacina Myoglobin: Molecular Bases for Ligand Binding. , 1991, , 161-170.		1
	Kinetic Evidences for Slow Structural Changes in the Chlorocruorin from Spirographis spallanzanii.		

²³⁴ Kinetic Evidences for Slow Structural Changes in the Chlorocruorin from Spirographis spallan , 1991, , 133-138.

#	Article	IF	CITATIONS
235	Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome c551 and nitrite reductase. FEBS Journal, 1990, 194, 109-118.	0.2	160
236	Presence of a class of chromophores as monitor of oxygen-linked conformational changes in hemocyanins. Biology of Metals, 1990, 3, 80-84.	1.1	0
237	The kinetics of electron entry in cytochromec oxidase. Biology of Metals, 1990, 3, 118-121.	1.1	2
238	Voltammetric studies on the electrochemical behaviour of membrane-entrapped hemes. Biology of Metals, 1990, 3, 122-124.	1.1	4
239	Effect of aromatic isothiocyanates on the functional properties of human hemoglobin. Biophysical Chemistry, 1990, 37, 293-302.	2.8	2
240	Equilibrium and kinetic study of imidazole binding to phthalocyaninatoiron(II) in dimethyl sulphoxide. Journal of the Chemical Society Dalton Transactions, 1990, , 105.	1.1	14
241	A spectroelectrochemical study of microperoxidase at bare and gold-plated RVC thin-layer electrodes. Biochimica Et Biophysica Acta - General Subjects, 1990, 1034, 294-297.	2.4	24
242	Cooperative ligand binding of crosslinked hemoglobins at very high temperatures. Journal of Molecular Biology, 1990, 213, 571-574.	4.2	7
243	X-ray crystal structure of the fluoride derivative of Aplysia limacina ferric myoglobin at 2·0 Ã resolution. Journal of Molecular Biology, 1990, 213, 621-625.	4.2	62
244	Effect of cumene hydroperoxide or hypoxia-reoxygenation on glutathione status in guinea-pig heart. Biochemical Pharmacology, 1990, 39, 1617-1620.	4.4	0
245	Encapsulation of proteins into human erythrocytes: a kinetic investigation. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1024, 5-9.	2.6	16
246	Amino acid sequence of α-chain of hemoglobin IV from trout (Salmo irideus). BBA - Proteins and Proteomics, 1989, 995, 255-258.	2.1	32
247	Membrane-entrapped cytochrome c: electrochemical and kinetic studies. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 275, 55-62.	0.1	0
248	Membrane-entrapped cytochrome c: Electrochemical and kinetic studies. Bioelectrochemistry, 1989, 21, 55-62.	1.0	5
249	The functional properties of amphibian hemoglobin: The case of Salamander salamander and Hydromantes genei. Comparative Biochemistry and Physiology A, Comparative Physiology, 1989, 93, 319-325.	0.6	2
250	Proton nuclear magnetic resonance study of the molecular and electronic structure of the heme cavity in Aplysia cyanometmyoglobin. Biochemistry, 1989, 28, 4880-4887.	2.5	35
251	Nitrite reductase fromPseudomonas aeruginosa: Sequence of the gene and the protein. FEBS Letters, 1989, 254, 33-38.	2.8	97
252	Aplysia limacina myoglobin. Journal of Molecular Biology, 1989, 205, 529-544.	4.2	143

#	Article	IF	CITATIONS
253	Effect of inositol hexakisphosphate on the spectroscopic properties of the nitric oxide derivative of ferrous naturally glycated human hemoglobin HbA1c. Journal of Inorganic Biochemistry, 1988, 34, 19-24.	3.5	7
254	Direct electrochemistry of the undecapeptide from cytochrome c (microperoxidase) at a glassy carbon electrode. Journal of the American Chemical Society, 1988, 110, 8536-8537.	13.7	87
255	Single cell microspectroscopy reveals that erythrocytes containing hemoglobin S retain a â€~memory' of previous sickling cycles. FEBS Letters, 1988, 236, 127-131.	2.8	7
256	Alteration of T-state binding properties of naturally glycated hemoglobin, HbA1c. Journal of Molecular Biology, 1988, 203, 233-239.	4.2	26
257	Is the Internal Electron Transfer the Rate-Limiting Step in the Catalytic Cycle of Cytochrome c Oxidase?. Annals of the New York Academy of Sciences, 1988, 550, 161-166.	3.8	14
258	Modulation of Cytochrome c Oxidase Activity by an Electrical Transmembrane Gradient. Annals of the New York Academy of Sciences, 1988, 550, 269-276.	3.8	8
259	Mini-myoglobin. Journal of Molecular Biology, 1988, 200, 725-733.	4.2	28
260	Antarctic fish hemoglobin: an outline of the molecular structure and oxygen binding properties—II. Oxygen binding properties. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1988, 90, 585-591.	0.2	6
261	Sexual and seasonal variability of lobster hemocyanin. Comparative Biochemistry and Physiology A, Comparative Physiology, 1988, 91, 445-449.	0.6	22
262	The scrapie agent and the prion hypothesis. Trends in Biochemical Sciences, 1988, 13, 309-313.	7.5	15
263	Is there a root effect inXenopushemoglobin?. FEBS Letters, 1987, 221, 161-166.	2.8	14
264	Glutathione peroxidase and oxidative hemolysis in trout red blood cells. FEBS Letters, 1987, 221, 355-358.	2.8	29
265	Equilibrium and kinetic study of nitric oxide binding to phthalocyaninatoiron(II) in dimethyl sulphoxide. Journal of the Chemical Society Dalton Transactions, 1987, , 369.	1.1	19
266	Kinetics of Pseudomonas aeruginosa cytochrome c551 and cytochrome oxidase oxidation by Co(phen)33+ and Mn(CyDTA)(H2O)â^'. Journal of Inorganic Biochemistry, 1987, 30, 155-166.	3.5	6
267	Redox properties of components I and IV of trout hemoglobins: kinetic and potentiometric studies. BBA - Proteins and Proteomics, 1987, 915, 415-419.	2.1	4
268	Unfolding and flexibility in hemoproteins shown in the case of carboxymethylated cytochrome c. BBA - Proteins and Proteomics, 1987, 914, 185-189.	2.1	14
269	Cytochrome-c oxidase. Subunit structure and proton pumping. FEBS Journal, 1987, 169, 1-8.	0.2	101
270	NMR study of the molecular and electronic structure of the heme cavity of Aplysia metmyoglobin. Resonance assignments based on isotope labeling and proton nuclear Overhauser effect measurements. Biochemistry, 1986, 25, 5638-5646.	2.5	51

#	Article	lF	CITATIONS
271	Mini-myoglobin: Preparation and reaction with oxygen and carbon monoxide. Journal of Molecular Biology, 1986, 188, 73-76.	4.2	31
272	A cooperative model for ligand binding to biological macromolecules as applied to oxygen carriers. Biophysical Chemistry, 1986, 23, 215-222.	2.8	56
273	Discrimination of tertiary and quaternary Bohr effect in the O2 binding of Helix pomatia β-hemocyanin. Biophysical Chemistry, 1986, 24, 319-325.	2.8	4
274	Molecular control of cytochrome oxidase activity. Bioelectrochemistry, 1986, 16, 159-165.	1.0	4
275	899 — A potentiometric study on the redox properties of hemoglobin from Camelus dromedarius. Bioelectrochemistry, 1986, 15, 521-526.	1.0	4
276	On the oxygen-linked anion-binding sites in human hemoglobin. Functional properties of human hemoglobin reacted with 4-isothiocyanatobenzenesulphonic acid and its hybrids. FEBS Journal, 1986, 161, 329-333.	0.2	12
277	Kinetics of electron transfer between two Hansenula anomala flavocytochrome b2 derivatives and two simple copper proteins (azurin and stellacyanin). FEBS Journal, 1986, 161, 465-472.	0.2	19
278	Ligand-dependent behavior of the hemoglobin from the ascarid Parascaris equorum. BBA - Proteins and Proteomics, 1986, 870, 169-175.	2.1	8
279	A Cooperative Model for Ligand Binding as Applied to Oxygen Carriers. , 1986, , 375-381.		1
280	A mechanism for prion replication. Nature, 1985, 314, 676-676.	27.8	12
281	Heterogeneous binding of oxygen and carbon monoxide to dissociated molluscan hemocyanin. Biophysical Chemistry, 1985, 22, 271-280.	2.8	7
282	Functional equivalence of monomeric (shark) and dimeric (bovine) cytochrome c oxidase. Journal of Inorganic Biochemistry, 1985, 23, 365-372.	3.5	21
283	pH-induced cleavage of the proximal histidine to iron bond in the nitric oxide derivative of ferrous monomeric hemosproteins and of the †chelated' protoheme model compound. BBA - Proteins and Proteomics, 1985, 829, 299-302.	2.1	23
284	Evidence for two oxygen-linked binding sites for polyanions in dromedary hemoglobin. FEBS Journal, 1985, 150, 387-393.	0.2	36
285	Equilibrium and kinetic study of pyridine binding to phthalocyaninatoiron(II) in dimethyl sulphoxide. Journal of the Chemical Society Dalton Transactions, 1985, , 1107.	1.1	16
286	Equilibrium and kinetic study of the reaction between phthalocyaninatoiron(II) and carbon monoxide in dimethyl sulphoxide in the presence of pyridine. Evidence for the formation of a transient. Journal of the Chemical Society Dalton Transactions, 1985, , 1113.	1.1	13
287	Crystal structure of ferric Aplysia limacina myoglobin at 2.0 Ã resolution. Journal of Molecular Biology, 1985, 183, 113-115.	4.2	34
288	Thermodynamics of the reaction of ferric myoglobin from Aplysia limacina with azide and fluoride. Journal of Molecular Biology, 1985, 182, 607-609.	4.2	4

#	Article	IF	CITATIONS
289	A new method for the determination of the buffer power of artificial phospholipid vesicles by stopped-flow spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 809, 39-43.	1.0	5
290	Kinetics of the reaction of intraerythrocytic haemoglobin by single cell microspectroscopy: effect of shape and osmolarity. FEBS Letters, 1985, 190, 217-220.	2.8	8
291	Oxygen carrier proteins. , 1985, , 263-331.		9
292	Molecular and functional properties of myoglobin from a marine turtle (Dermochelys coriacea). BBA - Proteins and Proteomics, 1984, 788, 281-289.	2.1	13
293	Amino-acid Sequence of β-chain of hemoglobin IV from trout (Salmo irideus). BBA - Proteins and Proteomics, 1984, 789, 69-73.	2.1	38
294	Distribution of copper atoms and binding of carbon monoxide in partially copper-depleted hemocyanin. BBA - Proteins and Proteomics, 1984, 788, 206-213.	2.1	13
295	A temperature-jump study of the electron transfer reactions in Hansenula anomala flavocytochrome b2. FEBS Journal, 1984, 140, 39-45.	0.2	24
296	Eraldo Antonini, 1931–1983. Trends in Biochemical Sciences, 1984, 9, 12-13.	7.5	4
297	EFfect of bepridil on the activity of cytochrome c oxidase in solution and in proteoliposomes. Biochemical Pharmacology, 1984, 33, 109-113.	4.4	1
298	Stereochemistry of ATP and GTP bound to fish haemoglobins. Journal of Molecular Biology, 1984, 178, 731-742.	4.2	64
299	The reaction of trout hemoglobins with isocyanides. FEBS Journal, 1983, 135, 171-174.	0.2	2
300	Effect of buffers on the functional properties of Helix pomatia Î ² -hemocyanin. BBA - Proteins and Proteomics, 1983, 744, 200-204.	2.1	3
301	A circular dichroism study of the proton-linked transition in the carbomonoxy derivative of the hemoglobin component IV from trout. BBA - Proteins and Proteomics, 1983, 742, 565-567.	2.1	2
302	Primary structure of hemoglobin from trout (salmo irideus). BBA - Proteins and Proteomics, 1983, 742, 72-77.	2.1	53
303	A spectrophotometric method to determine the amount of CO bound to hemocyanin. Analytical Biochemistry, 1983, 133, 465-469.	2.4	7
304	Purification of Pseudomonas cytochrome oxidase (or nitrite reductase) by immunological methods. Analytical Biochemistry, 1983, 129, 318-325.	2.4	11
305	Kinetic and thermodynamic parameters for oxygen binding to the allosteric states of panulirus interruptus hemocyanin. Biophysical Chemistry, 1983, 18, 117-124.	2.8	23
306	Comparative studies of hemoglobins from newts (Triturus cristatus, triturus vulgaris, triturus) Tj ETQq0 0 0 rgBT /	Overlock	10 Tf 50 67 1 4

1983, 74, 545-548.

#	Article	IF	CITATIONS
307	Interconversion between states in cytochrome oxidase: Interpretation of kinetic data on mixed-valence oxidase. FEBS Letters, 1983, 152, 75-78.	2.8	12
308	Regulation of electron transfer in metalloproteins. Pure and Applied Chemistry, 1983, 55, 1049-1058.	1.9	3
309	Thermodynamics of oxygen binding to trout haemoglobin I and its oxidation intermediates. Journal of Molecular Biology, 1982, 160, 531-543.	4.2	21
310	Spectroscopy of carbon monoxide-hemocyanins. Phosphorescence of the binuclear carbonylated copper centers. Biochemistry, 1982, 21, 415-418.	2.5	27
311	Hemoglobins from Wistar Rat:. Crystallization of Components and Intraerythrocytic Crystals. FEBS Journal, 1982, 129, 459-463.	0.2	11
312	Properties of trout HbI in water and ligand linked binding of Na+. FEBS Letters, 1981, 129, 273-276.	2.8	5
313	Interaction of lanthanide ions with Panulirus interruptus hemocyanin: Evidence for vicinity of some of the cation binding sites. Journal of Molecular Biology, 1981, 149, 805-812.	4.2	10
314	Reactivity of ferric Aplysia myoglobin towards anionic ligands in the acidic region. Journal of Molecular Biology, 1981, 146, 363-374.	4.2	53
315	Reaction of carbon monoxide with hemocyanin: Stereochemical effects of a non-bridging ligand. Journal of Molecular Biology, 1981, 153, 1111-1123.	4.2	22
316	Absence of water at the sixth co-ordination site in ferric Aplysia myoglobin. Journal of Molecular Biology, 1981, 151, 315-319.	4.2	69
317	Equilibrium and kinetic study of the reaction between phthalocyaninatoiron(II) and carbon monoxide in dimethyl sulphoxide. Journal of the Chemical Society Dalton Transactions, 1981, , 1120.	1.1	10
318	Effects of mercuric chloride on the structural and functional properties of Panulirus interruptus hemocyanin. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1981, 69, 253-257.	0.2	0
319	Purification and Functional Properties of the Hemoglobin Components from the Rat (Wistar). FEBS Journal, 1981, 116, 243-247.	0.2	25
320	Functional Properties of Hemoglobins from Triturus cristatus. FEBS Journal, 1981, 120, 323-327.	0.2	15
321	The electron transfer system of Pseudomonas aeruginosa: a study of the pH-dependent transitions between redox forms of azurin and cytochrome c551. Journal of Inorganic Biochemistry, 1981, 14, 327-338.	3.5	58
322	The K edges of the heme iron in the x-ray absorption spectra of native and carboxymethylated cytochrome c. Journal of Inorganic Biochemistry, 1981, 15, 179-184.	3.5	1
323	Structure of binding sites for heterotropic effectors in fish haemoglobins. Nature, 1981, 293, 587-588.	27.8	21
324	[36] Photochemistry of hemoproteins. Methods in Enzymology, 1981, 76, 582-595.	1.0	41

#	Article	IF	CITATIONS
325	The hydrolysis of α-CBZ-l-lysine-p-nitrophenyl ester by two forms of human urokinase. Analytical Biochemistry, 1980, 103, 235-239.	2.4	27
326	Luminescence of the copper-carbon monoxide complex of Neurospora tyrosinase. FEBS Letters, 1980, 111, 232-234.	2.8	24
327	Some immunochemical properties of pseudomonas aeruginosa cytochrome oxidase (or nitrate) Tj ETQq1 1 0.784	4314 rgBT 2.8	/Overlock 10
328	Kinetics of reversible protein denaturation. Biophysical Chemistry, 1979, 10, 119-127.	2.8	14
329	Cobalt-substituted hemoglobin Zürich (α2β263His→Arg). Oxygen equilibria and EPR spectra. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1979, 580, 91-99.	1.7	3
330	Studies on cobalt-reconstituted trout hemoglobins. FEBS Letters, 1979, 105, 229-231.	2.8	4
331	The replacement of calcium by terbium as an allosteric effector of hemocyanins. FEBS Letters, 1979, 99, 317-320.	2.8	17
332	The isolation and characterization of the hemoglobin components ofMylossoma sp., an amazonian teleost. Comparative Biochemistry and Physiology A, Comparative Physiology, 1979, 62, 155-162.	0.6	25
333	Multiple linkage in Panulirus interruptus hemocyanin. Biochemistry, 1979, 18, 5849-5854.	2.5	28
334	Studies of the functional properties of the hemoglobins ofOsteoglossum bicirrhosum andArapaima gigas. Comparative Biochemistry and Physiology A, Comparative Physiology, 1979, 62, 145-154.	0.6	14
335	The isolation and characterization of the hemoglobin ofBrachyplatystoma sp.: A tropical catfish. Comparative Biochemistry and Physiology A, Comparative Physiology, 1979, 62, 213-217.	0.6	7
336	Properties of hemocyanins isolated from Amazon river arthropods and molluscs. Comparative Biochemistry and Physiology A, Comparative Physiology, 1979, 62, 251-256.	0.6	9
337	The root effect hemoglobin of the jaraqui´, a teleost fish,Prochilodus sp Comparative Biochemistry and Physiology A, Comparative Physiology, 1979, 62, 195-200.	0.6	8
338	A re-evaluation of some basic structural and functional properties of Pseudomonas cytochrome oxidase. Biochemical Journal, 1979, 183, 701-709.	3.7	76
339	Effect of drugs on oxidation and precipitation of the isolated chains of human hemoglobin. Molecular and Cellular Biochemistry, 1978, 19, 43-7.	3.1	3
340	Primary structure of hemoglobin from trout (Salmo irideus). Amino acid sequence of α chain of Hb trout I. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1978, 536, 298-305.	1.7	50
341	Oxygenation and EPR spectral properties of Aplysia myoglobins containing cobaltous porphyrins. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1978, 533, 173-180.	1.7	28
342	Dissociation and Oxygen-Binding Behaviour of beta-Hemocyanin from Helox pomatia. FEBS Journal, 1978, 87, 467-473.	0.2	42

#	Article	IF	CITATIONS
343	Kinetics of the Bohr effect in the reaction of Helix pomatia β-hemocyanin with oxygen. Biochemical and Biophysical Research Communications, 1978, 82, 1062-1069.	2.1	11
344	Kinetics of the co-operative reaction of Helix pomatia hemocyanin with oxygen. Journal of Molecular Biology, 1978, 121, 431-439.	4.2	17
345	[6] Relaxation kinetics of heme proteins. Methods in Enzymology, 1978, 54, 64-84.	1.0	3
346	A comparative approach to protein-and ligand-dependence of the Root effect for fish haemoglobins. Biochemical Journal, 1978, 175, 407-412.	3.7	10
347	Kinetic control of co-operativity in the oxygen binding of Panulirus interruptus hemocyanin. Journal of Molecular Biology, 1977, 116, 569-576.	4.2	24
348	Binding of Carbon Monoxide to Hemoglobin Zurich. Proposal for a Kinetic Model. FEBS Journal, 1977, 75, 267-273.	0.2	25
349	The Effect of Macromolecular Polyanions on the Functional Properties of Human Hemoglobin. FEBS Journal, 1977, 76, 339-343.	0.2	25
350	Polysteric linkage. Journal of Molecular Biology, 1976, 100, 47-57.	4.2	49
351	Observations on CO trout hemoglobins by 13 C NMR. FEBS Letters, 1976, 62, 157-160.	2.8	14
352	The Virtual Absence of Antigenic Cross-Reactivity between Functionally Distinct Trout Hemoglobins. FEBS Journal, 1976, 71, 125-129.	0.2	7
353	Identification of Chloride-Binding Sites in Hemoglobin by Nuclear-Magnetic-Resonance Quadrupole-Relaxation Studies of Hemoglobin Digests. FEBS Journal, 1975, 55, 385-390.	0.2	91
354	Formation of Superoxide in the Autoxidation of the Isolated alpha and beta Chains of Human Hemoglobin and Its Involvement in Hemichrome Precipitation. FEBS Journal, 1975, 53, 99-104.	0.2	119
355	Nuclear magnetic resonance quadrupole relaxation studies of chloride binding to the isolated hemoglobins from trout (Salmo irideus). Biophysical Chemistry, 1975, 3, 56-65.	2.8	14
356	Spectral changes and allosteric transition in trout haemoglobin. Nature, 1975, 256, 761-762.	27.8	41
357	Crystallization and preliminary X-ray diffraction studies on met-myoglobin from Aplysia limacina. Journal of Molecular Biology, 1975, 97, 665-IN33.	4.2	9
358	Effect of light on carbon monoxide binding by erythrocruorin. Journal of Molecular Biology, 1975, 98, 333-339.	4.2	6
359	Equilibrium and kinetics of the reaction of aplysia myoglobin with azide. Biochemistry, 1975, 14, 1584-1588.	2.5	48
360	The reaction of nitric oxide withRhus verniciferalaccase. FEBS Letters, 1975, 54, 163-166.	2.8	14

#	Article	IF	CITATIONS
361	Effect of anions on the oxygen binding properties of the hemoglobin components from trout (Salmo) Tj ETQq1	1 0,78431	4 rggT /Over
362	Molecular Adaptation to Physiological Requirements: The Hemoglobin System of Trout. Current Topics in Cellular Regulation, 1975, 9, 1-39.	9.6	200
363	Hemoglobin and Methemoglobin. , 1975, , 753-797.		5
364	Concerted changes in an allosteric macromolecule. Biophysical Chemistry, 1974, 2, 338-344.	2.8	50
365	Functional properties of hemoglobin pôrto alegre (α2Aβ29 Ser→Cys) and the reactivity of its extra cysteinyl residue. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1974, 342, 15-20.	1.7	44
366	Functional properties of hemoglobin leiden (α2Aβ26 or7 Glu deleted). Archives of Biochemistry and Biophysics, 1974, 161, 328-332.	3.0	24
367	Kinetic properties of intermediates in hemoglobin from trout Salmo irideus. FEBS Letters, 1974, 46, 312-316.	2.8	8
368	Kinetics of the co-operative and non-co-operative reaction of Helix pomatia haemocyanin with oxygen. Journal of Molecular Biology, 1974, 89, 103-112.	4.2	30
369	Functional properties of carboxypeptidase-digested hemoglobins. Journal of Molecular Biology, 1974, 82, 499-511.	4.2	46
370	A temperature-jump study of the reaction between azurin and cytochrome c-551 from Pseudomonas aeruginosa (Short Communication). Biochemical Journal, 1974, 137, 113-116.	3.7	20
371	Studies on partially reduced mammalian cytochrome oxidase. Reactions with carbon monoxide and oxygen. Biochemical Journal, 1974, 137, 205-215.	3.7	152
372	The kinetics of oxidation of ferroperoxidase by molecular oxygen. A model of a terminal oxidase. Biochemical Journal, 1974, 141, 265-272.	3.7	29
373	Effect of Heme and Non-Heme Ligands on Subunit Dissociation of Normal and Carboxypeptidase-digested Hemoglobin. Journal of Biological Chemistry, 1974, 249, 5689-5694.	3.4	33
374	Hemoglobins from trout: Structural and functional properties. Molecular and Cellular Biochemistry, 1973, 1, 189-196.	3.1	67
375	Studies on the Properties of Fish Hemoglobins Molecular Properties and Interaction with Third Components of the Isolated Hemoglobins from Trout (Salmo irideus). FEBS Journal, 1973, 39, 563-570.	0.2	42
376	Studies on the Properties of Fish Hemoglobins. Kinetics of Reaction with Oxygen and Carbon Monoxide of the Isolated Hemoglobin Components from Trout (Salmo irideus). FEBS Journal, 1973, 39, 571-579.	0.2	32
377	The ethylisocyanide equilibrium of matrix-bound hemoglobin. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1973, 328, 74-80.	1.7	6
378	NMR studies of 13 CO-hemoglobin. Î \pm and Î 2 chain identification. FEBS Letters, 1973, 34, 69-70.	2.8	18

#	Article	IF	CITATIONS
379	Carbon monoxide binding by simple heme proteins under photodissociating conditions. Biochemistry, 1973, 12, 3424-3428.	2.5	18
380	Properties of Modified Cytochromes. Journal of Biological Chemistry, 1973, 248, 8162-8169.	3.4	32
381	The binding of ethyl isocyanide to ferroperoxidase. Biochemical Journal, 1972, 128, 377-382.	3.1	5
382	Functional properties of hemoglobin Rainier. FEBS Letters, 1972, 21, 341-343.	2.8	4
383	Some properties of Aplysia myoglobin covalently bound to a solid matrix. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1972, 285, 320-325.	1.7	12
384	Denaturation of Aplysia myoglobin. Equilibrium study. Journal of Molecular Biology, 1972, 63, 139-152.	4.2	59
385	Kinetics of reconstitution of polyphenoloxidase from apoenzyme and copper. Biochemical and Biophysical Research Communications, 1972, 49, 1208-1215.	2.1	37
386	Functional Properties of Native and Reconstituted Hemoglobins from Chironomus thummi thummi. FEBS Journal, 1972, 31, 52-58.	0.2	69
387	Properties of Modified Cytochromes. Journal of Biological Chemistry, 1972, 247, 6076-6081.	3.4	33
388	Kinetics of the Reaction with Oxygen of Mixtures of Oxy- and Carbon Monoxide Hemoglobin. Journal of Biological Chemistry, 1972, 247, 4305-4308.	3.4	12
389	Properties of the Product of Partial Photodissociation of Carbon Monoxide Hemoglobin. Journal of Biological Chemistry, 1972, 247, 319-321.	3.4	22
390	Studies on the reaction of isocyanides with haemproteins. Journal of Molecular Biology, 1971, 58, 261-276.	4.2	37
391	Kinetics of the reaction of Octopus vulgaris hemocyanin with oxygen. Journal of Molecular Biology, 1971, 55, 39-48.	4.2	17
392	Redox equilibrium of sperm-whale myoglobin, Aplysia myoglobin, and Chironomus thummi hemoglobin. Biochemistry, 1971, 10, 1604-1609.	2.5	77
393	An electron paramagnetic resonance study of Aplysia myoglobin. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1971, 236, 234-237.	1.7	14
394	The rate of electron transfer between fungal laccase and reduced azurin or cytochrome c. Archives of Biochemistry and Biophysics, 1971, 145, 349-353.	3.0	2
395	Transient kinetic studies of dopa oxidation by polyphenoloxidase. Biochimica Et Biophysica Acta - Biomembranes, 1971, 250, 306-310.	2.6	9
396	Evidence for cooperative effects in the oxidation of deoxyhemerythrin by ferricyanide. FEBS Letters, 1971, 16, 89-91.	2.8	4

#	Article	IF	CITATIONS
397	Functional Properties of Human Hemoglobin Treated with 5,5'-Dithiobis, 3,3'-Nitrobenzoic Acid. FEBS Journal, 1971, 22, 321-326.	0.2	6
398	The Interaction of Cyanide with Cytochrome Oxidase. FEBS Journal, 1971, 23, 396-400.	0.2	78
399	Catalytic Mechanism of Cytochrome Oxidase. Nature, 1970, 228, 936-937.	27.8	78
400	Studies on the functional properties of fish haemoglobins, I. The O2 equilibrium of trout haemoglobin. International Journal of Biochemistry & Cell Biology, 1970, 1, 57-61.	0.5	19
401	Equilibrium of human hemoglobin with ethylisocyanide: Further evidence for co-operativity in hemoglobin dimers. Journal of Molecular Biology, 1970, 47, 205-213.	4.2	29
402	Fluorescence studies of Aplysia and sperm whale apomyoglobins. Biochemistry, 1970, 9, 4723-4729.	2.5	78
403	Studies on hemerythrin. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1970, 207, 41-48.	1.7	9
404	On the rate of reaction of an organic phosphate (ATP) with deoxy hemoglobin. FEBS Letters, 1970, 7, 351-352.	2.8	5
405	Artificial intermediates in the reaction of haemoglobin. Journal of Molecular Biology, 1970, 49, 461-471.	4.2	87
406	Kinetics of the Reaction of Hemoglobin with Ethylisocyanide. Journal of Biological Chemistry, 1970, 245, 5412-5415.	3.4	13
407	Kinetics of oxygen binding by octopus haemocyanin. Journal of Molecular Biology, 1969, 46, 213-215.	4.2	7
408	Amino-acid Composition of Aplysia Myoglobin. Nature, 1968, 219, 487-487.	27.8	26
409	Reversible thermal denaturation of Aplysia myoglobin. Journal of Molecular Biology, 1968, 34, 497-504.	4.2	31
410	Spectral differences between haemoglobin and isolated haemoglobin chains in the deoxygenated state. Journal of Molecular Biology, 1968, 34, 357-359.	4.2	81
411	The hemoglobin of amphibia—VII. Equilibria and kinetics of the reduction of frog hemoglobin with oxygen and carbon monoxide. Comparative Biochemistry and Physiology, 1968, 24, 519-526.	1.1	13
412	Studies on the Equilibria and Kinetics of the Reactions of Peroxidases with Ligands. III. The Dissociation of Carbon Monoxide from Carbon Monoxide Ferro-Horseradish Peroxidase*. Biochemistry, 1967, 6, 1970-1974.	2.5	26
413	Studies on the Quantum Yields of the Photodissociation of Carbon Monoxide from Hemoglobin and Myoglobin*. Biochemistry, 1967, 6, 1216-1222.	2.5	63
414	Studies on the Oxidation-Reduction Potentials of Heme Proteins. Journal of Biological Chemistry, 1967, 242, 2295-2300.	3.4	26

#	Article	IF	CITATIONS
415	The Effect of Ligand Binding on the Optical Rotatory Dispersion of Myoglobin, Hemoglobin, and Isolated Hemoglobin Subunits. Journal of Biological Chemistry, 1967, 242, 773-776.	3.4	44
416	Observations on the Kinetics of the Reaction of Hemoglobin with Oxygen. Journal of Biological Chemistry, 1967, 242, 4841-4843.	3.4	30
417	Studies on the Relations between Molecular and Functional Properties of Hemoglobin. Journal of Biological Chemistry, 1967, 242, 4360-4366.	3.4	93
418	The carbon monoxide Bohr effect in hemoglobin from Thunnus thynnus. Archives of Biochemistry and Biophysics, 1966, 114, 195-199.	3.0	15
419	The Reactions of the Isolated α and β Chains of Human Hemoglobin with Oxygen and Carbon Monoxide. Journal of Biological Chemistry, 1966, 241, 5238-5243.	3.4	118
420	Preparation and Kinetic Properties of Intermediates in the Reaction of Hemoglobin with Ligands. Journal of Biological Chemistry, 1966, 241, 3236-3238.	3.4	60
421	Studies on the Equilibria and Kinetics of the Reactions of Peroxidases with Ligands. I. The Reaction of Ferroperoxidases with Carbon Monoxide*. Biochemistry, 1965, 4, 2672-2676.	2.5	47
422	Studies on the Oxidation-Reduction Potentials of Heme Proteins. IV. The Kinetics of Oxidation of Hemoglobin and Myoglobin by Ferricyanide*. Biochemistry, 1965, 4, 545-551.	2.5	75
423	Kinetics of the reactions of Aplysia myoglobin with oxygen and carbon monoxide. Archives of Biochemistry and Biophysics, 1965, 111, 576-579.	3.0	75
424	The Kinetics of the Bohr Effect in the Reaction of Human Hemoglobin with Carbon Monoxide. Journal of Biological Chemistry, 1965, 240, PC2262-PC2264.	3.4	44
425	Studies on the Oxidation-Reduction Potentials of Heme Proteins. Journal of Biological Chemistry, 1964, 239, 907-912.	3.4	126
426	Studies on the Oxidation-Reduction Potentials of Heme Proteins. Journal of Biological Chemistry, 1964, 239, 2340-2344.	3.4	27
427	Studies on the Relations between Molecular and Functional Properties of Hemoglobin. Journal of Biological Chemistry, 1963, 238, 2950-2957.	3.4	106
428	An Outlook on the Complexity of Protein Morphogenesis in Health and Disease. Frontiers in Molecular Biosciences, 0, 9, .	3.5	0