Eric O Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6124947/publications.pdf

Version: 2024-02-01

176 22,170 78 145 papers citations h-index g-index

184 184 184 184 15612

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	CRISPR Screen to Identify Factors that Render Tumor Cells Sensitive or Resistant to Killing by NK Cells. Methods in Molecular Biology, 2022, 2463, 269-288.	0.9	O
2	NK Cells Equipped With a Chimeric Antigen Receptor That Overcomes Inhibition by HLA Class I for Adoptive Transfer of CAR-NK Cells. Frontiers in Immunology, 2022, 13, 840844.	4.8	5
3	T cells discriminate between groups C1 and C2 HLA-C. ELife, 2022, 11, .	6.0	5
4	<i>Plasmodium falciparum</i> –specific IgM B cells dominate in children, expand with malaria, and produce functional IgM. Journal of Experimental Medicine, 2021, 218, .	8.5	44
5	<i>Trans</i> -endocytosis of intact IL-15Rα–IL-15 complex from presenting cells into NK cells favors signaling for proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 522-531.	7.1	38
6	PD-1 Expression on NK Cells in Malaria-Exposed Individuals Is Associated with Diminished Natural Cytotoxicity and Enhanced Antibody-Dependent Cellular Cytotoxicity. Infection and Immunity, 2020, 88,	2.2	15
7	Patients With Natural Killer (NK) Cell Chronic Active Epstein-Barr Virus Have Immature NK Cells and Hyperactivation of PI3K/Akt/mTOR and STAT1 Pathways. Journal of Infectious Diseases, 2020, 222, 1170-1179.	4.0	5
8	High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12826-12835.	7.1	68
9	Bone Marrow–Derived Dendritic Cell Cultures from RAGâ^'/â^' Mice Include IFN-γ–Producing NK Cells. ImmunoHorizons, 2020, 4, 415-419.	1.8	5
10	Human NK cell receptor KIR2DS4 detects a conserved bacterial epitope presented by HLA-C. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12964-12973.	7.1	59
11	CD28 Homolog Is a Strong Activator of Natural Killer Cells for Lysis of B7H7+ Tumor Cells. Cancer Immunology Research, 2019, 7, 939-951.	3.4	40
12	Adaptive NK cells in people exposed to <i>Plasmodium falciparum</i> correlate with protection from malaria. Journal of Experimental Medicine, 2019, 216, 1280-1290.	8.5	80
13	Inhibition-Resistant CARs for NK Cell Cancer Immunotherapy. Trends in Immunology, 2019, 40, 1078-1081.	6.8	4
14	Genome-Wide CRISPR Screen Reveals Cancer Cell Resistance to NK Cells Induced by NK-Derived IFN- \hat{l}^3 . Frontiers in Immunology, 2019, 10, 2879.	4.8	35
15	Cell atlas reveals the landscape of early pregnancy. Nature, 2018, 563, 337-338.	27.8	9
16	Cutting Edge: Quantitative Determination of CD40L Threshold for IL-12 and IL-23 Production from Dendritic Cells. Journal of Immunology, 2018, 201, 2879-2884.	0.8	9
17	NK cells inhibit Plasmodium falciparum growth in red blood cells via antibody-dependent cellular cytotoxicity. ELife, 2018, 7, .	6.0	92
18	Complement factor P: promoting the antibacterial activity of natural killer cells. Cellular and Molecular Immunology, 2017, 14, 797-799.	10.5	4

#	Article	IF	CITATIONS
19	Canonical and Cross-reactive Binding of NK Cell Inhibitory Receptors to HLA-C Allotypes Is Dictated by Peptides Bound to HLA-C. Frontiers in Immunology, 2017, 8, 193.	4.8	40
20	Zinc-Induced Polymerization of Killer-Cell Ig-like Receptor into Filaments Promotes Its Inhibitory Function at Cytotoxic Immunological Synapses. Molecular Cell, 2016, 62, 21-33.	9.7	23
21	KIR2DL3 and KIR2DL1 show similar impact on licensing of human NK cells. European Journal of Immunology, 2016, 46, 185-191.	2.9	23
22	Ionomycin Treatment Renders NK Cells Hyporesponsive. PLoS ONE, 2016, 11, e0150998.	2.5	14
23	A Single Amino Acid Change in Inhibitory Killer Cell Ig-like Receptor Results in Constitutive Receptor Self-Association and Phosphorylation. Journal of Immunology, 2015, 194, 817-826.	0.8	13
24	Interleukin-2 Activity Can Be Fine Tuned with Engineered Receptor Signaling Clamps. Immunity, 2015, 42, 826-838.	14.3	147
25	NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors. Journal of Immunology, 2015, 195, 4810-4821.	0.8	24
26	A signaling network stimulated by \hat{l}^2 ₂ integrin promotes the polarization of lytic granules in cytotoxic cells. Science Signaling, 2014, 7, ra96.	3.6	59
27	Comment on "Killer Ig-like Receptor 2DL4 Does Not Mediate NK Cell IFN-γ Responses to Soluble HLA-G Preparations― Journal of Immunology, 2014, 192, 4003.1-4003.	0.8	6
28	TNFR-Associated Factor 6 and TGF-β–Activated Kinase 1 Control Signals for a Senescence Response by an Endosomal NK Cell Receptor. Journal of Immunology, 2014, 192, 714-721.	0.8	10
29	Controlling Natural Killer Cell Responses: Integration of Signals for Activation and Inhibition. Annual Review of Immunology, 2013, 31, 227-258.	21.8	1,012
30	Cutting Edge: NK Cell Licensing Modulates Adhesion to Target Cells. Journal of Immunology, 2013, 191, 3981-3985.	0.8	50
31	Found: a cellular activating ligand for NKp44. Blood, 2013, 122, 2921-2922.	1.4	9
32	A positive role for senescence in reproduction?. Aging, 2013, 5, 96-97.	3.1	6
33	Pillars article: Recruitment of tyrosine phosphatase HCP by the killer cell inhibitory receptor. Immunity. 1996. 4: 77-85. Journal of Immunology, 2013, 191, 3491-9.	0.8	1
34	KIR2DL4 (CD158d): An activation receptor for HLA-G. Frontiers in Immunology, 2012, 3, 258.	4.8	157
35	Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20596-20601.	7.1	136
36	Cold Urticaria, Immunodeficiency, and Autoimmunity Related to <i>PLCG2</i> Deletions. New England Journal of Medicine, 2012, 366, 330-338.	27.0	391

#	Article	IF	CITATIONS
37	The Adaptor Protein Crk Controls Activation and Inhibition of Natural Killer Cells. Immunity, 2012, 36, 600-611.	14.3	74
38	Complementary Phosphorylation Sites in the Adaptor Protein SLP-76 Promote Synergistic Activation of Natural Killer Cells. Science Signaling, 2012, 5, ra49.	3.6	60
39	Palmitoylation of MICA, a ligand for NKG2D, mediates its recruitment to membrane microdomains and promotes its shedding. European Journal of Immunology, 2011, 41, 3667-3676.	2.9	33
40	Cutting Edge: NKG2D-Dependent Cytotoxicity Is Controlled by Ligand Distribution in the Target Cell Membrane. Journal of Immunology, 2011, 186, 5538-5542.	0.8	15
41	ICAM-1: Getting a Grip on Leukocyte Adhesion. Journal of Immunology, 2011, 186, 5021-5023.	0.8	114
42	β2 Integrin Induces TCRζ–Syk–Phospholipase C-γ Phosphorylation and Paxillin-Dependent Granule Polarization in Human NK Cells. Journal of Immunology, 2011, 186, 2998-3005.	0.8	51
43	Two modes of lytic granule fusion during degranulation by natural killer cells. Immunology and Cell Biology, 2011, 89, 728-738.	2.3	45
44	DNA-PKcs Controls an Endosomal Signaling Pathway for a Proinflammatory Response by Natural Killer Cells. Science Signaling, 2010, 3, ra14.	3.6	54
45	Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood, 2010, 115, 2167-2176.	1.4	711
46	Synergistic Signals for Natural Cytotoxicity Are Required to Overcome Inhibition by c-Cbl Ubiquitin Ligase. Immunity, 2010, 32, 175-186.	14.3	109
47	Cytotoxic immunological synapses. Immunological Reviews, 2010, 235, 24-34.	6.0	188
48	Antagonizing inhibition gets NK cells going. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10333-10334.	7.1	11
49	Lytic Granule Polarization, Rather than Degranulation, Is the Preferred Target of Inhibitory Receptors in NK Cells. Journal of Immunology, 2010, 185, 4698-4704.	0.8	29
50	Tethering of Intercellular Adhesion Molecule on Target Cells Is Required for LFA-1–Dependent NK Cell Adhesion and Granule Polarization. Journal of Immunology, 2010, 185, 2918-2926.	0.8	78
51	Signal Transduction During Activation and Inhibition of Natural Killer Cells. Current Protocols in Immunology, 2010, 90, Unit 11.9B.	3.6	118
52	Functional Analysis of Human NK Cells by Flow Cytometry. Methods in Molecular Biology, 2010, 612, 335-352.	0.9	122
53	Use of Transfected Drosophila S2 Cells to Study NK Cell Activation. Methods in Molecular Biology, 2010, 612, 67-88.	0.9	7
54	Distinct Role of Rab27a in Granule Movement at the Plasma Membrane and in the Cytosol of NK Cells. PLoS ONE, 2010, 5, e12870.	2.5	29

#	Article	IF	Citations
55	Integrin-Dependent Organization and Bidirectional Vesicular Traffic at Cytotoxic Immune Synapses. Immunity, 2009, 31, 99-109.	14.3	157
56	Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood, 2009, 114, 2657-2666.	1.4	228
57	Line of attack: NK cell specificity and integration of signals. Current Opinion in Immunology, 2008, 20, 344-352.	5.5	183
58	Negative signaling by inhibitory receptors: the NK cell paradigm. Immunological Reviews, 2008, 224, 70-84.	6.0	310
59	Inhibitory Receptor Signaling via Tyrosine Phosphorylation of the Adaptor Crk. Immunity, 2008, 29, 578-588.	14.3	95
60	Recruitment of Activation Receptors at Inhibitory NK Cell Immune Synapses. PLoS ONE, 2008, 3, e3278.	2.5	36
61	Tyrosine phosphorylation of an adapter protein induced by NK cell inhibitory receptor contributes to inhibition of cytotoxicity. FASEB Journal, 2008, 22, 1064.11.	0.5	0
62	Inhibitory receptor gp49B regulates eosinophil infiltration during allergic inflammation. Journal of Leukocyte Biology, 2007, 82, 1531-1541.	3.3	15
63	Defective cytotoxic lymphocyte degranulation in syntaxin-11–deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood, 2007, 110, 1906-1915.	1.4	272
64	Ready for Prime Time: NK Cell Priming by Dendritic Cells. Immunity, 2007, 26, 385-387.	14.3	64
65	Paul J. Leibson 1952–2007. Immunity, 2007, 27, 531-532.	14.3	0
66	Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood, 2006, 107, 159-166.	1.4	697
67	Activation, coactivation, and costimulation of resting human natural killer cells. Immunological Reviews, 2006, 214, 73-91.	6.0	531
68	Molecular basis for positive and negative signaling by the natural killer cell receptor 2B4 (CD244). Blood, 2005, 105, 4722-4729.	1.4	184
69	Expression of a killer cell receptor-like gene in plastic regions of the central nervous system. Journal of Neuroimmunology, 2005, 161, 177-182.	2.3	44
70	Activation of NK Cells by an Endocytosed Receptor for Soluble HLA-G. PLoS Biology, 2005, 4, e9.	5.6	280
71	Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. Journal of Experimental Medicine, 2005, 202, 1001-1012.	8.5	409
72	Understanding how combinations of HLA and KIR genes influence disease. Journal of Experimental Medicine, 2005, 201, 1025-1029.	8.5	195

#	Article	IF	Citations
73	Viral evasion of NK-cell activation. Trends in Immunology, 2005, 26, 403-405.	6.8	22
74	LFA-1 Contributes an Early Signal for NK Cell Cytotoxicity. Journal of Immunology, 2004, 173, 3653-3659.	0.8	261
75	KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding. European Journal of Immunology, 2003, 33, 1084-1093.	2.9	22
76	Vav1 Dephosphorylation by the Tyrosine Phosphatase SHP-1 as a Mechanism for Inhibition of Cellular Cytotoxicity. Molecular and Cellular Biology, 2003, 23, 6291-6299.	2.3	239
77	Vav1 Phosphorylation Is Induced by \hat{I}^2 2 Integrin Engagement on Natural Killer Cells Upstream of Actin Cytoskeleton and Lipid Raft Reorganization. Journal of Experimental Medicine, 2003, 198, 469-474.	8.5	111
78	Natural Killer Cell Inhibitory Receptors Block Actin Cytoskeleton-dependent Recruitment of 2B4 (CD244) to Lipid Rafts. Journal of Experimental Medicine, 2003, 197, 77-85.	8.5	118
79	Coexpression of CD58 or CD48 with Intercellular Adhesion Molecule 1 on Target Cells Enhances Adhesion of Resting NK Cells. Journal of Immunology, 2003, 170, 294-299.	0.8	93
80	Spontaneous Clustering and Tyrosine Phosphorylation of NK Cell Inhibitory Receptor Induced by Ligand Binding. Journal of Immunology, 2003, 170, 6107-6114.	0.8	59
81	KIR2DL4 (CD158d), an NK Cell-Activating Receptor with Inhibitory Potential. Journal of Immunology, 2002, 168, 6208-6214.	0.8	211
82	Stress Signals Activate Natural Killer Cells. Journal of Experimental Medicine, 2002, 196, 1399-1402.	8.5	53
83	Versatile signaling through NKG2D. Nature Immunology, 2002, 3, 1119-1120.	14.5	37
84	Tumor cell recognition by natural killer cells. Seminars in Cancer Biology, 2002, 12, 57-61.	9.6	73
85	Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158). Immunological Reviews, 2001, 181, 223-233.	6.0	130
86	Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1–HLA-Cw4 complex. Nature Immunology, 2001, 2, 452-460.	14.5	254
87	New nomenclature for MHC receptors. Nature Immunology, 2001, 2, 661-661.	14.5	83
88	Cutting Edge: Induction of IFN- \hat{I}^3 Production but Not Cytotoxicity by the Killer Cell Ig-Like Receptor KIR2DL4 (CD158d) in Resting NK Cells. Journal of Immunology, 2001, 167, 1877-1881.	0.8	224
89	How do killer cell Ig-like receptors inhibit natural killer cells?. , 2001, , 235-241.		0
90	A disulfide-linked natural killer cell receptor dimer has higher affinity for HLA-C than wild-type monomer. European Journal of Immunology, 2000, 30, 2692-2697.	2.9	18

#	Article	IF	Citations
91	Homogenous expression of killer cell immunoglobulin-like receptors (KIR) on polyclonal natural killer cells detected by a monoclonal antibody to KIR2D. Tissue Antigens, 2000, 56, 240-247.	1.0	4
92	Exposing tumor cells to killer cell attack. Nature Medicine, 2000, 6, 867-868.	30.7	17
93	Adhesion to target cells is disrupted by the killer cell inhibitory receptor. Current Biology, 2000, 10, 777-780.	3.9	165
94	Cobalt-mediated Dimerization of the Human Natural Killer Cell Inhibitory Receptor. Journal of Biological Chemistry, 2000, 275, 23700-23706.	3.4	23
95	Binding of Soluble KIR-Fc Fusion Proteins to HLA Class I. , 2000, 121, 239-250.		12
96	Use of Vaccinia Virus for Functional Gene Transfer in Natural Killer Cells., 2000, 121, 265-272.		8
97	Natural Killer Cells and Mast Cells from gp49B Null Mutant Mice Are Functional. Molecular and Cellular Biology, 2000, 20, 7178-7182.	2.3	21
98	Cutting Edge: NK Cell Inhibitory Receptors Prevent Tyrosine Phosphorylation of the Activation Receptor 2B4 (CD244). Journal of Immunology, 2000, 165, 3545-3548.	0.8	96
99	HLA class I recognition by killer cell Ig-like receptors. Seminars in Immunology, 2000, 12, 101-108.	5.6	84
100	The SH2 Domain-containing Inositol 5′-Phosphatase (SHIP) Recruits the p85 Subunit of Phosphoinositide 3-Kinase during FcγRIIb1-mediated Inhibition of B Cell Receptor Signaling. Journal of Biological Chemistry, 1999, 274, 7489-7494.	3.4	53
101	A Human Histocompatibility Leukocyte Antigen (HLA)-G–specific Receptor Expressed on All Natural Killer Cells. Journal of Experimental Medicine, 1999, 189, 1093-1100.	8.5	661
102	REGULATION OF IMMUNE RESPONSES THROUGH INHIBITORY RECEPTORS. Annual Review of Immunology, 1999, 17, 875-904.	21.8	893
103	Essential Role of LAT in T Cell Development. Immunity, 1999, 10, 323-332.	14.3	509
104	Structure of a human natural killer cell inhibitory receptor. Transplantation Proceedings, 1999, 31, 1871-1872.	0.6	2
105	Immunology Signal sequences stop killer cells. Nature, 1998, 391, 741-743.	27.8	23
106	Peptide loading onto recycling HLA-DR molecules occurs in early endosomes. European Journal of Immunology, 1998, 28, 799-804.	2.9	69
107	Regulation of Immune Responses by Inhibitory Receptors. Advances in Experimental Medicine and Biology, 1998, 452, 19-28.	1.6	11
108	Negative Signaling Pathways of the Killer Cell Inhibitory Receptor and FcγRIIb1 Require Distinct Phosphatases. Journal of Experimental Medicine, 1997, 186, 473-478.	8.5	92

#	Article	IF	CITATIONS
109	The Direct Binding of a p58 Killer Cell Inhibitory Receptor to Human Histocompatibility Leukocyte Antigen (HLA)-Cw4 Exhibits Peptide Selectivity. Journal of Experimental Medicine, 1997, 185, 1523-1528.	8.5	186
110	A Novel Phosphotyrosine Motif with a Critical Amino Acid at Position â^2 for the SH2 Domain-mediated Activation of the Tyrosine Phosphatase SHP-1. Journal of Biological Chemistry, 1997, 272, 13066-13072.	3.4	179
111	T cell response to myelin basic protein in the context of the multiple sclerosis-associated HLA-DR15 haplotype: peptide binding, immunodominance and effector functions of T cells. Journal of Neuroimmunology, 1997, 77, 195-203.	2.3	58
112	Killer cell inhibitory receptors: diversity, specificity, and function. Immunological Reviews, 1997, 155, 135-144.	6.0	202
113	Structure of the inhibitory receptor for human natural killer cells resembles haematopoietic receptors. Nature, 1997, 389, 96-100.	27.8	154
114	A new human gene complex encoding the killer cell inhibitory receptors and related monocyte/macrophage receptors. Current Biology, 1997, 7, 615-618.	3.9	179
115	Regulation through inhibitory receptors: Lessons from natural killer cells. Trends in Cell Biology, 1997, 7, 473-479.	7.9	71
116	Natural killer cell receptors. Current Opinion in Immunology, 1997, 9, 344-350.	5 . 5	84
117	Binding of a soluble p70 killer cell inhibitory receptor to HLA-B*5101: Requirement for all three p70 immunoglobulin domains. European Journal of Immunology, 1997, 27, 568-571.	2.9	62
118	HLA-DR-restricted presentation of purified myelin basic protein is independent of intracellular processing. European Journal of Immunology, 1997, 27, 941-951.	2.9	47
119	Recruitment of Tyrosine Phosphatase HCP by the Killer Cell Inhibitory Receptor. Immunity, 1996, 4, 77-85.	14.3	593
120	Direct binding of a soluble natural killer cell inhibitory receptor to a soluble human leukocyte antigen-Cw4 class I major histocompatibility complex molecule Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7178-7183.	7.1	85
121	Presentation of a cytosolic antigen by major histocompatibility complex class II molecules requires a long-lived form of the antigen. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14692-14697.	7.1	55
122	Inhibitory MHC class I receptors on NK and T cells: a standard nomenclature. Trends in Immunology, 1996, 17, 100.	7.5	79
123	A p70 killer cell inhibitory receptor specific for several HLA-B allotypes discriminates among peptides bound to HLA-B*2705 Journal of Experimental Medicine, 1996, 184, 1585-1590.	8.5	121
124	Isoforms of the invariant chain regulate transport of MHC class II molecules to antigen processing compartments Journal of Cell Biology, 1996, 133, 281-291.	5.2	71
125	Antigen presentation mediated by recycling of surface HLA-DR molecules. Nature, 1995, 375, 603-606.	27.8	260
126	Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science, 1995, 267, 1016-1018.	12.6	300

#	Article	IF	CITATIONS
127	HLA-DR polymorphism affects the interaction with CD4 Journal of Experimental Medicine, 1995, 182, 733-741.	8.5	43
128	Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity, 1995, 2, 439-449.	14.3	561
129	Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity, 1995, 3, 801-809.	14.3	319
130	T cell recognition of an HLA-A2-restricted epitope derived from a cleaved signal sequence Journal of Experimental Medicine, 1994, 180, 1989-1994.	8.5	34
131	Infection of natural killer cells by human herpesvirus 6. Nature, 1993, 362, 458-462.	27.8	206
132	Recognition of virus-infected cells by natural killer cell clones is controlled by polymorphic target cell elements Journal of Experimental Medicine, 1993, 178, 961-969.	8.5	82
133	Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8581-8585.	7.1	210
134	Sequences in both class II major histocompatibility complex alpha and beta chains contribute to the binding of the superantigen toxic shock syndrome toxin 1 Journal of Experimental Medicine, $1992, 175, 1301-1305.$	8.5	31
135	Identification of HLA-DR1 beta chain residues critical for binding staphylococcal enterotoxins A and E Journal of Experimental Medicine, 1992, 175, 415-424.	8.5	124
136	Distinct binding sites on HLA-DR for invariant chain and staphylococcal enterotoxins Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9657-9661.	7.1	20
137	Processing pathways for presentation of cytosolic antigen to MHC class II-restricted T cells. Nature, 1992, 357, 702-704.	27.8	200
138	Efficient cDNA expression vectors for stable and transient expression of HLA-DR in transfected fibroblast and lymphoid cells. Human Immunology, 1991, 31, 229-235.	2.4	128
139	Activated CD3-CD16+ Natural Killer Cells Express a Subset of the Lymphokine Genes Induced in Activated alphabeta+ and gammaomega+ T cells. Scandinavian Journal of Immunology, 1991, 33, 247-252.	2.7	13
140	An unusual form of alternative splicing in the HLA-DNA gene. Immunogenetics, 1991, 33, 124-31.	2.4	6
141	A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis Journal of Experimental Medicine, 1991, 173, 19-24.	8.5	287
142	The $\hat{l}\pm 1$ domain of the HLA-DR molecule is essential for high-affinity binding of the toxic shock syndrome toxin-1. Nature, 1990, 346, 474-476.	27.8	107
143	Introduction. Immunologic Research, 1990, 9, 1-1.	2.9	0
144	Structural requirements for pairing of alpha and beta chains in HLA-DR and HLA-DP molecules Journal of Experimental Medicine, 1990, 171, 615-628.	8.5	36

#	Article	IF	Citations
145	An endogenous processing pathway in vaccinia virus-infected cells for presentation of cytoplasmic antigens to class II-restricted T cells Journal of Experimental Medicine, 1990, 172, 947-954.	8.5	197
146	Transcription of unrearranged t cell receptor â^, genes in cd3- major histocompatibility complex-unrestricted cytotoxic cells. European Journal of Immunology, 1989, 19, 1973-1976.	2.9	10
147	Intracellular traffic and antigen processing. Trends in Immunology, 1989, 10, 232-234.	7. 5	92
148	Pathways of viral antigen processing and presentation to CTL: defined by the mode of virus entry?. Trends in Immunology, 1989, 10, 45-48.	7.5	85
149	HLA class II-restricted presentation of cytoplasmic measles virus antigens to cytotoxic T cells. Journal of Virology, 1989, 63, 1756-1762.	3.4	195
150	Antigen recognition overview. Current Opinion in Immunology, 1988, 1, 71-72.	5.5	1
151	Processing requirements for representation of antigens to T lymphocytes. Current Opinion in Immunology, 1988, 1, 98-102.	5.5	3
152	Recognition of Intracellular Measles Virus Antigens by HLA Class II Restricted Measles Virus-Specific Cytotoxic T Lymphocytes. Annals of the New York Academy of Sciences, 1988, 540, 352-353.	3.8	24
153	Presentation of influenza hemagglutinin peptide in the presence of limited allostimulation by HLA-DR1 transfected human fibroblasts. Human Immunology, 1988, 21, 173-181.	2.4	13
154	Structural model of HLA-DR1 restricted T cell antigen recognition. Cell, 1988, 52, 515-523.	28.9	188
155	Specific lysis of allogeneic cells after activation of CD3- lymphocytes in mixed lymphocyte culture Journal of Experimental Medicine, 1988, 168, 2403-2408.	8.5	115
156	Antigen presentation to HLA class II-restricted measles virus-specific T-cell clones can occur in the absence of the invariant chain Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 1209-1212.	7.1	52
157	Recognition of intracellular measles virus antigens by HLA class II-restricted measles virus-specific cytotoxic T lymphocytes. Journal of Neuroimmunology, 1987, 16, 83.	2.3	1
158	Two forms of the la antigen-associated invariant chain result from alternative initiations at two in-phase AUGs. Cell, 1986, 47, 619-625.	28.9	132
159	Mapping of the class II region of the human major histocompatibility complex by pulsed-field gel electrophoresis. Nature, 1986, 323, 453-455.	27.8	194
160	Cell surface expression of class II histocompatibility antigens occurs in the absence of the invariant chain Journal of Experimental Medicine, 1986, 164, 1490-1504.	8.5	144
161	Recombination within the HLA-D region. Correlation of molecular genotyping with functional data Journal of Experimental Medicine, 1984, 160, 222-238.	8.5	26
162	Structural relationship of the SB \hat{l}^2 -chain gene to HLA-D-region genes and murine I-region genes. Nature, 1984, 310, 233-235.	27.8	32

#	Article	IF	Citations
163	la-negative B-cell variants reveal a coordinate regulation in the transcription of the HLA Class II gene family. Immunogenetics, 1984, 19, 349-353.	2.4	57
164	Molecular analysis of the genes for human class II antigens of the major histocompatibility complex. Human Immunology, 1983, 8, 113-121.	2.4	23
165	Isolation of cDNA clones for the p33 invariant chain associated with HLA-DR antigens Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 5714-5718.	7.1	40
166	Isolation of cDNA clones encoding HLA-DR alpha chains Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 6979-6983.	7.1	97
167	Isolation of distinct cDNA clones encoding HLA-DR beta chains by use of an expression assay Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 7465-7469.	7.1	105
168	Allelic polymorphism and complexity of the genes for HLA-DR β-chains—direct analysis by DNA–DNA hybridization. Nature, 1982, 300, 372-374.	27.8	139
169	Ribosomal insertion-like elements in Drosophila melanogaster are interspersed with mobile sequences. Cell, 1981, 25, 399-408.	28.9	92
170	Nucleotide sequence of the initiation site for ribosomal RNA transcription in Drosophila melanogaster: comparison of genes with and without insertions Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 1513-1517.	7.1	98
171	Expression of the ribosomal DNA insertions in bobbed mutants of Drosophila melanogaster. Molecular Genetics and Genomics, 1981, 182, 377-384.	2.4	48
172	Repeated Genes in Eukaryotes. Annual Review of Biochemistry, 1980, 49, 727-764.	11.1	1,359
173	Alternative pathways in the processing of ribosomal RNA precursor in Drosophila melanogaster. Journal of Molecular Biology, 1980, 138, 873-878.	4.2	70
174	Restriction analysis of spacers in ribosomal DNA of Drosophila melanogaster. Nucleic Acids Research, 1979, 7, 205-215.	14.5	71
175	Expression of ribosomal DNA insertions in drosophila melanogaster. Cell, 1979, 18, 1185-1196.	28.9	183
176	Ribosomal DNA in Drosophila melanogaster. Journal of Molecular Biology, 1978, 126, 749-768.	4.2	146