Soo Chan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6124584/publications.pdf Version: 2024-02-01

SOO CHANLEE

#	Article	IF	CITATIONS
1	Compositional changes in fecal microbiota associated with clinical phenotypes and prognosis in Korean patients with inflammatory bowel disease. Intestinal Research, 2023, 21, 148-160.	2.6	14
2	ldentification of Mucormycosis by Fluorescence In Situ Hybridization Targeting Ribosomal RNA in Tissue Samples. Journal of Fungi (Basel, Switzerland), 2022, 8, 289.	3.5	2
3	Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens. Frontiers in Molecular Biosciences, 2020, 7, 588913.	3.5	9
4	mSphere of Influence: the Mycobiota in Human Health and Disease. MSphere, 2020, 5, .	2.9	3
5	The heterotrimeric Gâ€protein beta subunit Gpb1 controls hyphal growth under low oxygen conditions through the protein kinase A pathway and is essential for virulence in the fungus <i>Mucor circinelloides</i> . Cellular Microbiology, 2020, 22, e13236.	2.1	15
6	Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds. MBio, 2020, 11, .	4.1	10
7	A Novel Resistance Pathway for Calcineurin Inhibitors in the Human-Pathogenic Mucorales Mucor circinelloides. MBio, 2020, 11, .	4.1	29
8	Epigenetic mechanisms of drug resistance in fungi. Fungal Genetics and Biology, 2019, 132, 103253.	2.1	36
9	Maternal exercise before and during pregnancy alleviates metabolic dysfunction associated with high-fat diet in pregnant mice, without significant changes in gut microbiota. Nutrition Research, 2019, 69, 42-57.	2.9	9
10	Calcium-Calmodulin-Calcineurin Signaling: A Globally Conserved Virulence Cascade in Eukaryotic Microbial Pathogens. Cell Host and Microbe, 2019, 26, 453-462.	11.0	106
11	Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nature Communications, 2019, 10, 4275.	12.8	80
12	Gastrointestinal microbiota alteration induced by Mucor circinelloides in a murine model. Journal of Microbiology, 2019, 57, 509-520.	2.8	18
13	Candida albicans Morphology-Dependent Host FGF-2 Response as a Potential Therapeutic Target. Journal of Fungi (Basel, Switzerland), 2019, 5, 22.	3.5	10
14	Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides. PLoS Genetics, 2019, 15, e1007957.	3.5	46
15	Nanoemulsion as an Effective Treatment against Human-Pathogenic Fungi. MSphere, 2019, 4, .	2.9	17
16	Heterotrimeric G-alpha subunits Gpa11 and Gpa12 define a transduction pathway that control spore size and virulence in Mucor circinelloides. PLoS ONE, 2019, 14, e0226682.	2.5	10
17	CRISPR-Cas9 induces point mutation in the mucormycosis fungus Rhizopus delemar. Fungal Genetics and Biology, 2019, 124, 1-7.	2.1	28
18	Rad53- and Chk1-Dependent DNA Damage Response Pathways Cooperatively Promote Fungal Pathogenesis and Modulate Antifungal Drug Susceptibility. MBio, 2019, 10, .	4.1	22

SOO CHAN LEE

#	Article	IF	CITATIONS
19	<i>Mucor circinelloides</i> : Growth, Maintenance, and Genetic Manipulation. Current Protocols in Microbiology, 2018, 49, e53.	6.5	38
20	Outbreak of Invasive Wound Mucormycosis in a Burn Unit Due to Multiple Strains of Mucor circinelloides f. circinelloides Resolved by Whole-Genome Sequencing. MBio, 2018, 9, .	4.1	54
21	An Atlas of Genetic Variation Linking Pathogen-Induced Cellular Traits to Human Disease. Cell Host and Microbe, 2018, 24, 308-323.e6.	11.0	48
22	Genetic Tools for Investigating Mucorales Fungal Pathogenesis. Current Clinical Microbiology Reports, 2018, 5, 173-180.	3.4	9
23	Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence, 2017, 8, 186-197.	4.4	130
24	Construction of a Recyclable Genetic Marker and Serial Gene Deletions in the Human Pathogenic Mucorales <i>Mucor circinelloides</i> . G3: Genes, Genomes, Genetics, 2017, 7, 2047-2054.	1.8	22
25	Fungal Sex: The Mucoromycota. Microbiology Spectrum, 2017, 5, .	3.0	14
26	Dynamics of parasitophorous vacuoles formed by the microsporidian pathogen Encephalitozoon cuniculi. Fungal Genetics and Biology, 2017, 107, 20-23.	2.1	3
27	FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in <i>Malassezia</i> . MBio, 2017, 8, .	4.1	14
28	Fungal Sex: The Mucoromycota. , 2017, , 177-191.		3
29	A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides. PLoS Genetics, 2017, 13, e1006686.	3.5	50
30	Structures of Pathogenic Fungal FKBP12s Reveal Possible Self-Catalysis Function. MBio, 2016, 7, e00492-16.	4.1	29
31	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	3.9	175
32			
02	Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nature Chemical Biology, 2016, 12, 867-875.	8.0	79
33		8.0 3.5	79 39
	Chemical Biology, 2016, 12, 867-875. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug		
33	Chemical Biology, 2016, 12, 867-875. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis. PLoS Genetics, 2016, 12, e1006350. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host–pathogen interactions of the pathogenic mucoralean fungus <scp><i>M</i></scp>	3.5	39

SOO CHAN LEE

#	Article	IF	CITATIONS
37	Unseen sex in ancient virgin fungi. New Phytologist, 2014, 201, 3-5.	7.3	6
38	Sex in the Mucoralean Fungi. Mycoses, 2014, 57, 18-24.	4.0	21
39	Antifungal drug resistance evoked via RNAi-dependent epimutations. Nature, 2014, 513, 555-558.	27.8	147
40	Calcineurin Plays Key Roles in the Dimorphic Transition and Virulence of the Human Pathogenic Zygomycete Mucor circinelloides. PLoS Pathogens, 2013, 9, e1003625.	4.7	134
41	Parallels in Intercellular Communication in Oomycete and Fungal Pathogens of Plants and Humans. PLoS Pathogens, 2012, 8, e1003028.	4.7	14
42	Function of Cryptococcus neoformans KAR7 (<i>SEC66</i>) in Karyogamy during Unisexual and Opposite-Sex Mating. Eukaryotic Cell, 2012, 11, 783-794.	3.4	42
43	Pseudohyphal Growth of Cryptococcus neoformans Is a Reversible Dimorphic Transition in Response to Ammonium That Requires Amt1 and Amt2 Ammonium Permeases. Eukaryotic Cell, 2012, 11, 1391-1398.	3.4	28
44	The Evolution of Sex: a Perspective from the Fungal Kingdom. Microbiology and Molecular Biology Reviews, 2010, 74, 298-340.	6.6	326
45	Evolution of the sex-Related Locus and Genomic Features Shared in Microsporidia and Fungi. PLoS ONE, 2010, 5, e10539.	2.5	77
46	Generation of genetic diversity in microsporidia via sexual reproduction and horizontal gene transfer. Communicative and Integrative Biology, 2009, 2, 414-417.	1.4	31
47	Microsporidia Evolved from Ancestral Sexual Fungi. Current Biology, 2008, 18, 1675-1679.	3.9	256