Dake Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6124538/publications.pdf

Version: 2024-02-01

		471509	395702
33	1,273	17	33
papers	citations	h-index	g-index
34 all docs	34 docs citations	34 times ranked	1279 citing authors

#	Article	IF	CITATIONS
1	Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Frontiers in Endocrinology, 2019, 10, 249.	3.5	402
2	The Role of Phyto-Melatonin and Related Metabolites in Response to Stress. Molecules, 2018, 23, 1887.	3.8	103
3	Phytomelatonin: An Emerging Regulator of Plant Biotic Stress Resistance. Trends in Plant Science, 2021, 26, 70-82.	8.8	103
4	Structural diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Natural Product Reports, 2020, 37, 763-796.	10.3	85
5	Melatonin inhibits seed germination by crosstalk with abscisic acid, gibberellin, and auxin in Arabidopsis. Journal of Pineal Research, 2021, 70, e12736.	7.4	61
6	Overexpression of the Melatonin Synthesis-Related Gene SICOMT1 Improves the Resistance of Tomato to Salt Stress. Molecules, 2019, 24, 1514.	3.8	53
7	<i>Solanum</i> steroidal glycoalkaloids: structural diversity, biological activities, and biosynthesis. Natural Product Reports, 2021, 38, 1423-1444.	10.3	48
8	Identification of Glutathione S-Transferase (GST) Genes from a Dark Septate Endophytic Fungus (Exophiala pisciphila) and Their Expression Patterns under Varied Metals Stress. PLoS ONE, 2015, 10, e0123418.	2.5	44
9	Identification, Biological Activities and Biosynthetic Pathway of Dendrobium Alkaloids. Frontiers in Pharmacology, 2021, 12, 605994.	3.5	32
10	Melatonin confers heavy metal-induced tolerance by alleviating oxidative stress and reducing the heavy metal accumulation in Exophiala pisciphila, a dark septate endophyte (DSE). BMC Microbiology, 2021, 21, 40.	3. 3	30
11	Genomic Analysis of the ASMT Gene Family in Solanum lycopersicum. Molecules, 2017, 22, 1984.	3.8	28
12	Melatonin synthesis genes <i>N</i> à€acetylserotonin methyltransferases evolved into caffeic acid <i>O</i> à€methyltransferases and both assisted in plant terrestrialization. Journal of Pineal Research, 2021, 71, e12737.	7.4	25
13	Identification of Potential Biomarkers from Aconitum carmichaelii, a Traditional Chinese Medicine, Using a Metabolomic Approach. Planta Medica, 2018, 84, 434-441.	1.3	24
14	Fungi isolated from host protocorms accelerate symbiotic seed germination in an endangered orchid species (Dendrobium chrysotoxum) from southern China. Mycorrhiza, 2020, 30, 529-539.	2.8	23
15	Orchid Reintroduction Based on Seed Germination-Promoting Mycorrhizal Fungi Derived From Protocorms or Seedlings. Frontiers in Plant Science, 2021, 12, 701152.	3.6	23
16	Four new C 18 -diterpenoid alkaloids with analgesic activity from Aconitum weixiense. Fìtoterapìâ, 2013, 91, 280-283.	2.2	21
17	Probing the transcriptome of Aconitum carmichaelii reveals the candidate genes associated with the biosynthesis of the toxic aconitine-type C19-diterpenoid alkaloids. Phytochemistry, 2018, 152, 113-124.	2.9	20
18	Two New <scp>C₁₉</scp> â€Diterpenoid Alkaloids with Antiâ€inflammatory Activity from <i>Activity from <i>Activity</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	4.9	17

#	Article	IF	Citations
19	Four new diterpenoid alkaloids with antitumor effect from Aconitum nagarum var. heterotrichum. Chinese Chemical Letters, 2017, 28, 358-361.	9.0	16
20	Grafting: a potential method to reveal the differential accumulation mechanism of secondary metabolites. Horticulture Research, 2022, 9, uhac050.	6.3	16
21	Two new bis-C ₂₀ -diterpenoid alkaloids with anti-inflammation activity from <i>Aconitum bulleyanum</i> . Journal of Asian Natural Products Research, 2019, 21, 323-330.	1.4	14
22	Enriched networks †nucleoside/nucleotide and ribonucleoside/ribonucleotide metabolic processes' and †response to stimulus†metabolic processes de drought adaptation of the epiphytic orchid Dendrobium wangliangii. Physiology and Molecular Biology of Plants, 2019, 25, 31-45.	3.1	13
23	Conosiligins A–D, Ring-Rearranged Tremulane Sesquiterpenoids from Conocybe siliginea. Journal of Natural Products, 2020, 83, 2743-2748.	3.0	11
24	Two new C ₁₉ -diterpenoid alkaloids from <i>Aconitum tsaii</i> . Journal of Asian Natural Products Research, 2017, 19, 457-461.	1.4	10
25	Three New C ₁₉ â€Diterpenoid Alkaloids from <i>Aconitum forrestii</i> . Helvetica Chimica Acta, 2013, 96, 2155-2159.	1.6	8
26	A novel case of autogamy and cleistogamy in <i>Dendrobium wangliangii</i> : A rare orchid distributed in the dryâ€hot valley. Ecology and Evolution, 2019, 9, 12906-12914.	1.9	8
27	<i>Aconitum</i> Diterpenoid Alkaloid Profiling to Distinguish between the Official Traditional Chinese Medicine (TCM) Fuzi and Adulterant Species Using LC-qToF-MS with Chemometrics. Journal of Natural Products, 2021, 84, 570-587.	3.0	7
28	Two new C ₁₉ -diterpenoid alkaloids from <i>Aconitum straminiflorum</i> . Journal of Asian Natural Products Research, 2016, 18, 366-370.	1.4	6
29	NtCOMT1 responsible for phytomelatonin biosynthesis confers drought tolerance in Nicotiana tabacum. Phytochemistry, 2022, 202, 113306.	2.9	6
30	Four new C19-diterpenoid alkaloids from the roots of Aconitum ouvrardianum. Journal of Asian Natural Products Research, 2019, 21, 9-16.	1.4	5
31	OUP accepted manuscript. Journal of Experimental Botany, 2022, , .	4.8	5
32	Genome-Wide Identification and Expression Profile of the SNAT Gene Family in Tobacco (Nicotiana) Tj ETQq0 0	0 rg <u>β</u> Ţ /Ον	verlgck 10 Tf 5
33	Gene rational design: the dawn of crop breeding. Trends in Plant Science, 2022, , .	8.8	2