
## Susan Gottesman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6124333/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A small RNA regulates the expression of genes involved in iron metabolism in <i>Escherichiacoli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4620-4625. | 7.1  | 1,037     |
| 2  | Posttranslational Quality Control: Folding, Refolding, and Degrading Proteins. Science, 1999, 286, 1888-1893.                                                                                               | 12.6 | 997       |
| 3  | The RpoS-Mediated General Stress Response in <i>Escherichia coli</i> . Annual Review of Microbiology, 2011, 65, 189-213.                                                                                    | 7.3  | 775       |
| 4  | PROTEASES AND THEIR TARGETS INESCHERICHIA COLI. Annual Review of Genetics, 1996, 30, 465-506.                                                                                                               | 7.6  | 689       |
| 5  | Bacterial Small RNA Regulators: Versatile Roles and Rapidly Evolving Variations. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003798-a003798.                                                      | 5.5  | 643       |
| 6  | Identification of novel small RNAs using comparative genomics and microarrays. Genes and Development, 2001, 15, 1637-1651.                                                                                  | 5.9  | 627       |
| 7  | Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes and Development, 2003, 17, 2374-2383.                                                                         | 5.9  | 626       |
| 8  | The Small RNA Regulators ofEscherichia coli: Roles and Mechanisms. Annual Review of Microbiology, 2004, 58, 303-328.                                                                                        | 7.3  | 536       |
| 9  | Effect of RyhB Small RNA on Global Iron Use in Escherichia coli. Journal of Bacteriology, 2005, 187,<br>6962-6971.                                                                                          | 2.2  | 501       |
| 10 | Global analysis of small RNA and mRNA targets of Hfq. Molecular Microbiology, 2003, 50, 1111-1124.                                                                                                          | 2.5  | 494       |
| 11 | THE RCS PHOSPHORELAY: A Complex Signal Transduction System. Annual Review of Microbiology, 2005, 59, 379-405.                                                                                               | 7.3  | 486       |
| 12 | Micros for microbes: non-coding regulatory RNAs in bacteria. Trends in Genetics, 2005, 21, 399-404.                                                                                                         | 6.7  | 440       |
| 13 | Proteolysis in Bacterial Regulatory Circuits. Annual Review of Cell and Developmental Biology, 2003, 19, 565-587.                                                                                           | 9.4  | 395       |
| 14 | Regulation and mode of action of the second small RNA activator of RpoS translation, RprA.<br>Molecular Microbiology, 2002, 46, 813-826.                                                                    | 2.5  | 324       |
| 15 | Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. Molecular<br>Microbiology, 2006, 59, 231-247.                                                                              | 2.5  | 269       |
| 16 | Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA.<br>EMBO Journal, 2010, 29, 3094-3107.                                                                     | 7.8  | 262       |
| 17 | The RssB response regulator directly targets sigmaS for degradation by ClpXP. Genes and Development, 2001, 15, 627-637.                                                                                     | 5.9  | 261       |
| 18 | Regulation of RpoS by a novel small RNA: the characterization of RprA. Molecular Microbiology, 2004, 39, 1382-1394.                                                                                         | 2.5  | 260       |

SUSAN GOTTESMAN

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Bacterial Regulation: Global Regulatory Networks. Annual Review of Genetics, 1984, 18, 415-441.                                                                                      | 7.6  | 258       |
| 20 | Positive regulation by small RNAs and the role of Hfq. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9602-9607.                        | 7.1  | 253       |
| 21 | Bacterial Small RNA-based Negative Regulation: Hfq and Its Accomplices. Journal of Biological Chemistry, 2013, 288, 7996-8003.                                                       | 3.4  | 249       |
| 22 | Modulating the outer membrane with small RNAs. Genes and Development, 2006, 20, 2338-2348.                                                                                           | 5.9  | 196       |
| 23 | Regulation of Proteolysis of the Stationary-Phase Sigma Factor RpoS. Journal of Bacteriology, 1998,<br>180, 1154-1158.                                                               | 2.2  | 191       |
| 24 | The Crp-Activated Small Noncoding Regulatory RNA CyaR (RyeE) Links Nutritional Status to Group<br>Behavior. Journal of Bacteriology, 2009, 191, 461-476.                             | 2.2  | 184       |
| 25 | New aspects of RNA-based regulation by Hfq and its partner sRNAs. Current Opinion in Microbiology, 2018, 42, 53-61.                                                                  | 5.1  | 184       |
| 26 | Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. Journal of<br>Biological Chemistry, 2019, 294, 11685-11700.                                | 3.4  | 180       |
| 27 | sRNA-Mediated Control of Transcription Termination in E.Âcoli. Cell, 2016, 167, 111-121.e13.                                                                                         | 28.9 | 173       |
| 28 | Alternative Hfqâ€ <scp>sRNA</scp> interaction modes dictate alternative <scp>mRNA</scp> recognition.<br>EMBO Journal, 2015, 34, 2557-2573.                                           | 7.8  | 172       |
| 29 | A complex network of small nonâ€coding <scp>RNAs</scp> regulate motility in<br><i><scp>E</scp>scherichia coli</i> . Molecular Microbiology, 2012, 86, 524-538.                       | 2.5  | 170       |
| 30 | The Complex Rcs Regulatory Cascade. Annual Review of Microbiology, 2018, 72, 111-139.                                                                                                | 7.3  | 169       |
| 31 | Trans-Acting Small RNAs and Their Effects on Gene Expression in <i>Escherichia coli</i> and <i>Salmonella enterica</i> . EcoSal Plus, 2020, 9, .                                     | 5.4  | 161       |
| 32 | Modulating RssB activity: IraP, a novel regulator of ÂS stability in Escherichia coli. Genes and<br>Development, 2006, 20, 884-897.                                                  | 5.9  | 160       |
| 33 | A PhoQ/Pâ€regulated small RNA regulates sensitivity of <i>Escherichia coli</i> to antimicrobial peptides.<br>Molecular Microbiology, 2009, 74, 1314-1330.                            | 2.5  | 152       |
| 34 | Multiple pathways for regulation of σ <sup>S</sup> (RpoS) stability in <i>Escherichia coli</i> via the action of multiple antiâ€adaptors. Molecular Microbiology, 2008, 68, 298-313. | 2.5  | 150       |
| 35 | Competition among Hfqâ€binding small RNAs in <i>Escherichia coli</i> . Molecular Microbiology, 2011, 82, 1545-1562.                                                                  | 2.5  | 147       |
| 36 | The 5′ end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. Nucleic Acids Research, 2008, 36, 6781-6794.                     | 14.5 | 145       |

SUSAN GOTTESMAN

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Role of RcsF in Signaling to the Rcs Phosphorelay Pathway in Escherichia coli. Journal of<br>Bacteriology, 2005, 187, 6770-6778.                                                                                    | 2.2  | 133       |
| 38 | Ïf E Regulates and Is Regulated by a Small RNA in Escherichia coli. Journal of Bacteriology, 2007, 189, 4243-4256.                                                                                                  | 2.2  | 131       |
| 39 | Mutations in Interaction Surfaces Differentially Impact E. coli Hfq Association with Small RNAs and Their mRNA Targets. Journal of Molecular Biology, 2013, 425, 3678-3697.                                         | 4.2  | 127       |
| 40 | Mechanism of Positive Regulation by DsrA and RprA Small Noncoding RNAs: Pairing Increases<br>Translation and Protects <i>rpoS</i> mRNA from Degradation. Journal of Bacteriology, 2010, 192,<br>5559-5571.          | 2.2  | 125       |
| 41 | ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proceedings of the National<br>Academy of Sciences of the United States of America, 2007, 104, 12896-12901.                                     | 7.1  | 124       |
| 42 | A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as<br>regulating the DpiA/DpiB twoâ€component system. Molecular Microbiology, 2009, 72, 551-565.                          | 2.5  | 124       |
| 43 | The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13503-13508.    | 7.1  | 110       |
| 44 | Stealth regulation: biological circuits with small RNA switches. Genes and Development, 2002, 16, 2829-2842.                                                                                                        | 5.9  | 109       |
| 45 | Six-fold rotational symmetry of ClpQ, theE. colihomolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Letters, 1996, 398, 274-278.                                                             | 2.8  | 105       |
| 46 | MicA sRNA links the PhoP regulon to cell envelope stress. Molecular Microbiology, 2010, 76, 467-479.                                                                                                                | 2.5  | 99        |
| 47 | Role of polynucleotide phosphorylase in sRNA function in <i>Escherichia coli</i> . Rna, 2011, 17, 1172-1189.                                                                                                        | 3.5  | 99        |
| 48 | C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113,<br>E6089-E6096.        | 7.1  | 92        |
| 49 | Hfq links translation repression to stress-induced mutagenesis in <i>E. coli</i> . Genes and Development, 2017, 31, 1382-1395.                                                                                      | 5.9  | 84        |
| 50 | Regulation of RpoS by a novel small RNA: the characterization of RprA. Molecular Microbiology, 2001, 39, 1382-1394.                                                                                                 | 2.5  | 83        |
| 51 | Phage Resistance in Multidrug-Resistant Klebsiella pneumoniae ST258 Evolves via Diverse Mutations<br>That Culminate in Impaired Adsorption. MBio, 2020, 11, .                                                       | 4.1  | 82        |
| 52 | Roles of adaptor proteins in regulation of bacterial proteolysis. Current Opinion in Microbiology, 2013, 16, 140-147.                                                                                               | 5.1  | 81        |
| 53 | Stress sigma factor RpoS degradation and translation are sensitive to the state of central<br>metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112,<br>5159-5164. | 7.1  | 63        |
| 54 | sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs. Nucleic Acids<br>Research, 2016, 44, 6907-6923.                                                                              | 14.5 | 63        |

SUSAN GOTTESMAN

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Alternative pathways for <i>Escherichia coli</i> biofilm formation revealed by sRNA overproduction.<br>Molecular Microbiology, 2017, 105, 309-325.                                                        | 2.5  | 61        |
| 56 | Regulation of Transcription Termination of Small RNAs and by Small RNAs: Molecular Mechanisms and<br>Biological Functions. Frontiers in Cellular and Infection Microbiology, 2019, 9, 201.                | 3.9  | 61        |
| 57 | Anti-adaptors provide multiple modes for regulation of the RssB adaptor protein. Genes and Development, 2013, 27, 2722-2735.                                                                              | 5.9  | 59        |
| 58 | Regulation of acetate metabolism and coordination with the TCA cycle via a processed small RNA.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1043-1052. | 7.1  | 55        |
| 59 | Small RNA Regulation of TolC, the Outer Membrane Component of Bacterial Multidrug Transporters.<br>Journal of Bacteriology, 2016, 198, 1101-1113.                                                         | 2.2  | 50        |
| 60 | Regulation of Capsule Synthesis: Modification of the Two-Component Paradigm by an Accessory Unstable Regulator. , 0, , 253-262.                                                                           |      | 49        |
| 61 | Small Regulatory RNAs in the Enterobacterial Response to Envelope Damage and Oxidative Stress.<br>Microbiology Spectrum, 2018, 6, .                                                                       | 3.0  | 48        |
| 62 | Complex transcriptional and postâ€transcriptional regulation of an enzyme for lipopolysaccharide<br>modification. Molecular Microbiology, 2013, 89, 52-64.                                                | 2.5  | 45        |
| 63 | RNA reflections: converging on Hfq. Rna, 2015, 21, 511-512.                                                                                                                                               | 3.5  | 42        |
| 64 | Translational Regulation of the Escherichia coli Stress Factor RpoS: a Role for SsrA and Lon. Journal of Bacteriology, 2007, 189, 4872-4879.                                                              | 2.2  | 41        |
| 65 | A <i>rhll</i> 5′ UTR-Derived sRNA Regulates RhlR-Dependent Quorum Sensing in Pseudomonas<br>aeruginosa. MBio, 2019, 10, .                                                                                 | 4.1  | 40        |
| 66 | The MiaA tRNA Modification Enzyme Is Necessary for Robust RpoS Expression in Escherichia coli.<br>Journal of Bacteriology, 2014, 196, 754-761.                                                            | 2.2  | 34        |
| 67 | Analysis of the Escherichia coli Alp Phenotype: Heat Shock Induction in ssrA Mutants. Journal of<br>Bacteriology, 2005, 187, 4739-4751.                                                                   | 2.2  | 33        |
| 68 | Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system. Nucleic Acids Research, 2016, 44, gkw642.                                                        | 14.5 | 32        |
| 69 | Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing. Journal of Molecular Biology, 2015, 427, 3491-3500.                                                          | 4.2  | 28        |
| 70 | IgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein.<br>PLoS Genetics, 2020, 16, e1008610.                                                                   | 3.5  | 28        |
| 71 | Small RNAs Shed Some Light. Cell, 2004, 118, 1-2.                                                                                                                                                         | 28.9 | 25        |
| 72 | Structural basis for inhibition of a response regulator of Ïf <sup>S</sup> stability by a ClpXP antiadaptor. Genes and Development, 2019, 33, 718-732.                                                    | 5.9  | 23        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A fluorescence-based genetic screen reveals diverse mechanisms silencing small RNA signaling in <i>E.<br/>coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1  | 21        |
| 74 | CELL BIOLOGY: Enhanced: Surviving Starvation. Science, 2001, 293, 614-615.                                                                                                                                         | 12.6 | 21        |
| 75 | Multiple <i>in vivo</i> roles for the C-terminal domain of the RNA chaperone Hfq. Nucleic Acids<br>Research, 2022, 50, 1718-1733.                                                                                  | 14.5 | 20        |
| 76 | Experimental Evolution of Escherichia coli K-12 at High pH and with RpoS Induction. Applied and Environmental Microbiology, 2018, 84, .                                                                            | 3.1  | 19        |
| 77 | Chilled in Translation: Adapting to Bacterial Climate Change. Molecular Cell, 2018, 70, 193-194.                                                                                                                   | 9.7  | 18        |
| 78 | Riboswitch regulates RNA. Science, 2014, 345, 876-877.                                                                                                                                                             | 12.6 | 15        |
| 79 | Hfqs in <scp><i>B</i></scp> <i>acillus anthracis</i> : Role of protein sequence variation in the structure and function of proteins in the <scp>H</scp> fq family. Protein Science, 2015, 24, 1808-1819.           | 7.6  | 14        |
| 80 | Stress Reduction, Bacterial Style. Journal of Bacteriology, 2017, 199, .                                                                                                                                           | 2.2  | 14        |
| 81 | In vivo characterization of an Hfq protein encoded by the Bacillus anthracis virulence plasmid pXO1.<br>BMC Microbiology, 2017, 17, 63.                                                                            | 3.3  | 9         |
| 82 | Spot 42 Small RNA Regulates Arabinose-Inducible araBAD Promoter Activity by Repressing Synthesis of the High-Affinity Low-Capacity Arabinose Transporter. Journal of Bacteriology, 2017, 199, e00691-16.           | 2.2  | 9         |
| 83 | How Does the Alarmone ppGpp Change Bacterial Cell Metabolism? From Genome-wide Approaches to<br>Structure to Physiology. Molecular Cell, 2020, 80, 1-2.                                                            | 9.7  | 7         |
| 84 | Phosphate on, rubbish out. Nature, 2016, 539, 38-39.                                                                                                                                                               | 27.8 | 6         |
| 85 | Small Regulatory RNAs in the Enterobacterial Response to Envelope Damage and Oxidative Stress. , 0, , 211-228.                                                                                                     |      | 5         |
| 86 | Roles of mRNA Stability, Translational Regulation, and Small RNAs in Stress Response Regulation. , 0, ,<br>59-73.                                                                                                  |      | 4         |
| 87 | A reversed approach for finding small RNAs regulating genes of interest. FASEB Journal, 2009, 23, 846.3.                                                                                                           | 0.5  | 0         |
| 88 | IgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein. ,<br>2020, 16, e1008610.                                                                                         |      | 0         |
| 89 | IgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein. ,<br>2020, 16, e1008610.                                                                                         |      | 0         |
| 90 | lgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein. ,<br>2020, 16, e1008610.                                                                                         |      | 0         |

| #  | Article                                                                                                                    | IF | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 91 | lgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein. ,<br>2020, 16, e1008610. |    | 0         |