Shinji Fujimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122068/publications.pdf

Version: 2024-02-01

165 papers	2,453 citations	236925 25 h-index	223800 46 g-index
166	166	166	2434
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature. Materials Transactions, 2009, 50, 2242-2246.	1.2	208
2	XPS characterization of passive films formed on Type 304 stainless steel in humid atmosphere. Corrosion Science, 2012, 58, 62-68.	6.6	162
3	Semiconductive behavior of passive films formed on pure Cr and Fe–Cr alloys in sulfuric acid solution. Electrochimica Acta, 2002, 47, 4357-4366.	5.2	156
4	TiO ₂ Nanotubes – Annealing Effects on Detailed Morphology and Structure. European Journal of Inorganic Chemistry, 2010, 2010, 4351-4356.	2.0	129
5	Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures. Acta Biomaterialia, 2006, 2, 709-715.	8.3	119
6	Semiconductor properties and protective role of passive films of iron base alloys. Corrosion Science, 2007, 49, 195-202.	6.6	112
7	Nanotube oxide coating on Ti–29Nb–13Ta–4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta, 2006, 52, 94-101.	5.2	98
8	Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment. Journal of Biomedical Materials Research - Part A, 2006, 77A, 112-118.	4.0	93
9	Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys. Electrochemistry Communications, 2008, 10, 910-913.	4.7	73
10	Anodic oxide nanotube layers on Ti–Ta alloys: Substrate composition, microstructure and self-organization on two-size scales. Corrosion Science, 2009, 51, 1528-1533.	6.6	61
11	Aging behavior of ultrafine grained Al–2 wt%Cu alloy severely deformed by accumulative roll bonding. Science and Technology of Advanced Materials, 2004, 5, 173-180.	6.1	57
12	Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field. Scripta Materialia, 2006, 54, 527-532.	5.2	52
13	Growth and properties of Cr-rich thick and porous oxide films on Type 304 stainless steel formed by square wave potential pulse polarisation. Electrochimica Acta, 2001, 47, 543-551.	5.2	44
14	Semiconductive Properties of Passive Films Formed on Fe-18Cr in Borate Buffer Solution. Journal of the Electrochemical Society, 2004, 151, B39.	2.9	43
15	Environmental Factors Affecting Hydrogen Entry into High Strength Steel due to Atmospheric Corrosion. Materials Transactions, 2006, 47, 2956-2962.	1.2	43
16	Corrosion behaviour of Lotus-type porous high nitrogen nickel-free stainless steels. Corrosion Science, 2008, 50, 183-193.	6.6	37
17	Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers. Electrochimica Acta, 2009, 54, 5155-5162.	5.2	37
18	Formation of self-organized pores on type 316 stainless steel in organic solvents. Electrochimica Acta, 2012, 82, 333-338.	5.2	36

#	Article	IF	Citations
19	Transition in the nanoporous structure of iron oxides during the oxidation of iron nanoparticles and nanowires. Acta Materialia, 2009, 57, 4261-4266.	7.9	35
20	Influence of Oxidation Temperature and Cr Content on the Adhesion and Microstructure of Scale on Low Cr Steels. Oxidation of Metals, 2010, 73, 1-13.	2.1	35
21	Electrochemical noise analysis for estimation of corrosion rate of carbon steel in bicarbonate solution. Corrosion Science, 2003, 45, 2093-2104.	6.6	33
22	Strength of self-organized TiO2 nanotube arrays. Acta Materialia, 2010, 58, 4956-4967.	7.9	33
23	Fabrication of porous aluminum with deep pores by using Al–In monotectic solidification and electrochemical etching. Materials Letters, 2004, 58, 911-915.	2.6	31
24	The electrochemical conditions for coloured film formation on type 304 stainless steel with square wave polarization. Corrosion Science, 1993, 35, 147-152.	6.6	29
25	Colloidal Zn(Te,Se)/ZnS Core/Shell Quantum Dots Exhibiting Narrow-Band and Green Photoluminescence. ACS Omega, 2018, 3, 6703-6709.	3 . 5	29
26	Double Zincate Pretreatment of Sputter-Deposited Al Films. Journal of the Electrochemical Society, 2001, 148, C433.	2.9	26
27	Selective dissolution of nanolamellar Ti–41 at.% Al alloy single crystals. Acta Materialia, 2010, 58, 2876-2886.	7.9	25
28	Impedance and photoelectrochemical properties of porous oxide film on Type304 stainless steel formed by square wave potential pulse polarisation. Journal of Electroanalytical Chemistry, 1999, 473, 265-271.	3.8	23
29	Semiconductor properties of passive films formed on sputter-deposited Fe–18Cr alloy thin films with various additive elements. Science and Technology of Advanced Materials, 2004, 5, 195-200.	6.1	23
30	Extremely high corrosion resistance of thin film stainless steels deposited by ion beam sputtering. Materials Science & Deposited & Structural Materials: Properties, Microstructure and Processing, 1999, 267, 314-318.	5 . 6	22
31	Photo Electrochemical Response of Passive Films Formed on Pure CR and Fe-Cr Alloys in Sulphuric Acid Solution. Materials Science Forum, 1998, 289-292, 989-996.	0.3	21
32	In situ X-ray diffraction of surface oxide on type 430 stainless steel in breakaway condition using synchrotron radiation. Corrosion Science, 2012, 55, 219-225.	6.6	19
33	Characterization of oxide films formed on Alloy 600 and Alloy 690 in simulated PWR primary water by using hard X-ray photoelectron spectroscopy. Journal of Solid State Electrochemistry, 2015, 19, 3521-3531.	2.5	19
34	Morphological characterization of porous InP superlattices. Science and Technology of Advanced Materials, 2004, 5, 119-123.	6.1	17
35	Nitrogen-doped TiO2 mesosponge layers formed by anodization of nitrogen-containing Ti alloys. Journal of Solid State Electrochemistry, 2012, 16, 89-92.	2.5	17
36	The step response function of anodic reaction induced by rapid straining on passive metals. Corrosion Science, 1990, 31, 643-648.	6.6	16

#	Article	IF	Citations
37	Electrochemical conditions for environment-assisted cracking of 6061 Al alloy. Corrosion Science, 2005, 47, 2441-2449.	6.6	15
38	Semiconductive behavior of passive films formed on Fe-Cr alloy. Journal of Electroceramics, 2006, 16, 49-54.	2.0	15
39	Breakdown of Passive Films and Repassivation of Ti-6Al-4 V Alloy with Rapid Elongation in Simulated Body Fluid including Osteoblast-like Cells. Journal of the Electrochemical Society, 2013, 160, C576-C580.	2.9	13
40	Electrochemical Behavior of Type 316L Stainless Steel during Cyclic Deformation under Cell Culturing. Materials Transactions, 2014, 55, 1890-1894.	1.2	13
41	Degradation of Ti–6Al–4V alloy under cyclic loading in a simulated body environment with cell culturing. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 6-13.	3.1	13
42	Disorder and Structural Relaxation in Passive Films on Fe-Cr Alloys. Materials Science Forum, 1995, 185-188, 233-240.	0.3	12
43	Direct Plating of Electroless Ni-P Layers on Sputter-Deposited Al-Ni Alloy Films. Journal of the Electrochemical Society, 2003, 150, C461.	2.9	12
44	In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels. Journal of Materials Science: Materials in Medicine, 2008, 19, 3385-3397.	3.6	12
45	Formation Process of Colored Films on SUS304 Stainless Steel with the Square Wave Potential Pulse Method. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1991, 77, 1192-1197.	0.4	11
46	Effect of Cations on Protective Properties of Rust Layer Formed on Carbon Steel during Wet/Dry Cyclic Corrosion. Materials Transactions, 2020, 61, 506-514.	1.2	11
47	Growth Process of Passive Films on Austenitic Stainless Steels under Wet-dry Cyclic Condition. ISIJ International, 2012, 52, 1356-1361.	1.4	10
48	Selective pore growth on lamellar Ti–41at.%Al alloy. Electrochemistry Communications, 2013, 26, 117-120.	4.7	10
49	TiO ₂ nanotube layers with metallic nanoparticles. Journal of Physics: Conference Series, 2009, 165, 012037.	0.4	9
50	Growth of nanotubular oxide layer on Ti-Ni alloys with different Ni contents. Applied Surface Science, 2016, 369, 430-435.	6.1	9
51	Atomic-Structure Characterization of Passive Film of Fe by Grazing Incidence X-ray Scattering at SPring-8., 2006,, 95-100.		9
52	Modification of Passive Film Formed on an Fe-18Cr Alloy in Sulphuric Acid Solution by Ultra-violet Light Irradiation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 375-382.	0.4	9
53	Straining Electrode Behavior of Fe–Cr and Ni–Cr Alloys in High Temperature and High Pressure Borate Buffer Solution. Transactions of the Japan Institute of Metals, 1987, 28, 424-433.	0.5	8
54	Current Status and Future of Studies on Corrosion of Carbon Steel in the Presence of Magnetite. Zairyo To Kankyo/ Corrosion Engineering, 2005, 54, 2-8.	0.2	8

#	Article	IF	CITATIONS
55	Numerical Analysis Model of Galvanic Corrosion with Ion Movement and Reactions. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2009, 95, 144-153.	0.4	8
56	Repassivation Behavior of Newly Created Surface of Pure Nickel in High Temperature and High Pressure Neutral Solution. Transactions of the Japan Institute of Metals, 1987, 28, 224-231.	0.5	7
57	The Formation and Properties of a Thick Passive Film on Fe-Cr Alloys with Square Wave Potential Pulse Polarization. Materials Science Forum, 1995, 185-188, 741-748.	0.3	7
58	Anodic Porous and Tubular Oxide Layers on Ti Alloys. ECS Transactions, 2009, 16, 359-367.	0.5	7
59	Numerical Analysis of Galvanic Corrosion under a Thin Electrolyte Film. Zairyo To Kankyo/ Corrosion Engineering, 2011, 60, 333-341.	0.2	7
60	Detection of Welded Part of Type 304 Stainless Steel with the Scanning Vibrating Electrode Technique. Corrosion Engineering, 1990, 39, 303-308.	0.1	6
61	Crystallographic characterization of stress corrosion cracking initiation on type 316L stainless steel in high temperature and high pressure water. Journal of Physics: Conference Series, 2009, 165, 012009.	0.4	6
62	Corrosion Products near the Shear Cut Edge of 55 mass% Al-Zn Alloy Coated Steel Sheets under Simulated Marine Atmospheric Environment. Zairyo To Kankyo/ Corrosion Engineering, 2010, 59, 468-477.	0.2	6
63	Passive Films on Iron Group Metals and Stainless Steel Hyomen Kagaku, 1998, 19, 812-818.	0.0	6
64	Analysis of Anodic Behavior of Iron Electrode in High Temperature and High Pressure Aqueous Solution by Straining Electrode. Corrosion Engineering, 1985, 34, 72-78.	0.1	5
65	Technical Note:Breakdown of Passivity on Pure Nickel by Sulfate Ion in High Temperature Aqueous Solution. Corrosion, 1985, 41, 177-179.	1.1	5
66	Two-Stage HNO3 Passivation Treatment for Improving the Pitting Corrosion Resistance of Type 304 Stainless Steel. Zairyo To Kankyo/ Corrosion Engineering, 1999, 48, 155-161.	0.2	5
67	Effect of Environmental Conditions on the Corrosion near Shear Cut Edge of 55 mass% Al–Zn Alloy Coated Steel Sheets. ISIJ International, 2011, 51, 462-470.	1.4	5
68	Structure and Corrosion Protection of Rust Layer Formed on Pre-rusted Carbon Steel Covered with the Reactive Paint Coating. Zairyo To Kankyo/ Corrosion Engineering, 2017, 66, 93-98.	0.2	5
69	Modification of Rust Layer on Carbon Steel with Reactive Actions of Metallic Cations for Improved Corrosion Protectiveness. Corrosion, 2020, 76, 335-343.	1.1	5
70	Corrosion behavior of carbon steel coated with a zincâ€rich paint containing metallic compounds under wet and dry cyclic conditions. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 1787-1795.	1.5	5
71	Suppression of Pitting Corrosion with Passive Film Modification on Type 304 Stainless Steel by Ultra-Violet Light Irradiation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 527-533.	0.4	5
72	Numerical Analysis Model of Galvanic Corrosion with Ion Movement and Reactions. ISIJ International, 2010, 50, 743-751.	1.4	5

#	Article	IF	CITATIONS
73	Influence of CaO/SiO ₂ on the Reduction Behavior of Sintered Fe ₂ O ₃ a€"CaOâ€"SiO ₂ â€"Al ₂ O ₃ Tablets at the Softening and Melting Temperatures. ISIJ International, 2020, 60, 1479-1486.	1.4	5
74	An Experimental Investigation on Characteristics of the New Oscillating-plate Viscometer. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1985, 71, 1490-1496.	0.4	5
75	Stress Corrosion Cracking of SUS316L Stainless Steel in the Chloride Solution Containing Thiosulfate Ion by the Slow Strain Rate Technique. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1991, 77, 1511-1518.	0.4	5
76	Strucutral Analysis of Passive Films on Stainless Steel by Synchrotron Radiation. Zairyo To Kankyo/Corrosion Engineering, 2008, 57, 250-257.	0.2	5
77	Straining Electrode Behavior of Pure Iron in High Temperature and High Pressure Borate Buffer Solution. Transactions of the Japan Institute of Metals, 1987, 28, 319-326.	0.5	4
78	Electrochemical Behaviour of Lotus-Type Porous SUS304L and SUS316L Stainless Steels. Materials Transactions, 2006, 47, 2229-2232.	1.2	4
79	Electrochemical Characterization of Ti and Ti Base Alloys under Simulated Body Fluid Environment. Materials Science Forum, 2006, 512, 249-254.	0.3	4
80	Characterization of Reaction of Green Rust with Foreign Ions using X-ray Absorption Fine Structure. Zairyo To Kankyo/ Corrosion Engineering, 2008, 57, 353-357.	0.2	4
81	Electrochemical Characterization of Passive Films on Ni-Based Alloys in Acidic and Neutral Solutions. Materials Transactions, 2015, 56, 593-599.	1.2	4
82	Evaluation of Cathodic Protection Under Disbonded Coating on Buried Steel Structures by Laboratory and Field Tests. Corrosion, 2016, 72, 1311-1322.	1.1	4
83	Corrosion Generation and Cleaning Effect on Surgical Instruments with Attached Radiofrequency Identification Tags in Long-Term Usage. Surgical Infections, 2019, 20, 665-671.	1.4	4
84	Numerical Analysis for Corrosion near Shear Cut Edge of Galvanic Steel Sheet. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2011, 97, 108-116.	0.4	4
85	Band structures of passive films on titanium in simulated bioliquids determined by photoelectrochemical response: principle governing the biocompatibility. Science and Technology of Advanced Materials, 2022, 23, 322-331.	6.1	4
86	Straining Electrode Behavior of Pure Iron in High Temperature and High Pressure Aqueous Solution. Transactions of the Japan Institute of Metals, 1984, 25, 553-560.	0.5	3
87	Straining Electrode Behavior of Pure Nickel in High Temperature and High Pressure Aqueous Solution Containing Sulphate Ion. Corrosion Engineering, 1986, 35, 276-282.	0.1	3
88	The Effect of F- in the HNO3 Passivation Treatment for Improving the Pitting Resistance of Type 304 Stainless Steel. Zairyo To Kankyo/ Corrosion Engineering, 1999, 48, 41-46.	0.2	3
89	Surface modification of \hat{I}^2 -Type titanium alloy by electrochemical potential pulse polarization. Journal of Physics: Conference Series, 2009, 165, 012007.	0.4	3
90	Formation of Nano-Structured Oxide Layers Formed on Ti-Fe Alloys by Anodization. Materials Transactions, 2016, 57, 519-524.	1.2	3

#	Article	IF	CITATIONS
91	Electrochemical Behavior of Type 304 Stainless Steel in Ionic Liquid Containing Small Amount of Water. Journal of the Electrochemical Society, 2016, 163, C506-C513.	2.9	3
92	Fabrication of Titania Nanotube Arrays by Anodization and Their Functionalization. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 520-526.	0.2	3
93	Stress corrosion cracking of copper in swollen bentonite simulating nuclear waste disposal environment. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 333-338.	1.5	3
94	Numerical Simulation of Tribocorrosion of CoCr Alloy and Ti with Galvanic Coupling in Simulated Body Fluid. Materials Transactions, 2021, 62, 1489-1494.	1.2	3
95	Corrosion Behavior under Black Deposit on Low Cr Bearing Steels in NaCl Completion Fluid. ISIJ International, 2008, 48, 1758-1765.	1.4	3
96	Dissolution and Repassivation with Passivity Breakdown of Various Metallic Biomaterials in Bio-Mechano-Chemical Environment. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 981-988.	0.2	3
97	I. Fundamental Electrochemistry of Corrosion. Zairyo To Kankyo/ Corrosion Engineering, 2017, 66, 317-325.	0.2	3
98	Stress and Adhesion of Protective Oxide Scales on Stainless Steels and RE Effects. ISIJ International, 2019, 59, 1642-1649.	1.4	3
99	Scanning Vibrating Electrode Technique. Zairyo To Kankyo/ Corrosion Engineering, 1993, 42, 797-804.	0.2	2
100	Effect of Photo Irradiation on Corrosion Behaviour and Modification of Passive Films by Ultra-Violet Light. Zairyo To Kankyo/ Corrosion Engineering, 2002, 51, 453-457.	0.2	2
101	Passivity Breakdown and Repassivation on TiNi During Rapid Straining Accompanying Martensitic Phase Transformation. ECS Transactions, 2009, 16, 233-238.	0.5	2
102	Dye-Sensitized TiO2 Nanotubes with Ag Nanoparticles. ECS Transactions, 2009, 16, 261-266.	0.5	2
103	Cell Activity on Type 316L Stainless Steel with Self-Organized Nanopores Formed by Anodic Polarization. Materials Transactions, 2016, 57, 2065-2071.	1.2	2
104	Structure of Corrosion Product Formed on Carbon Steel Covered with NiSO ₄ -Added Resin Coating under Sulfuric Acid Mist Environment Containing Chloride. Materials Transactions, 2021, 62, 781-787.	1.2	2
105	Semiconductor Property of Passive Films and Corrosion Behavior of Fe-Cr Alloys. , 2006, , 33-49.		2
106	Effect of CaCl2 concentration on the probability distribution of stress corrosion cracking failure time of Type 304 stainless steel Zairyo/Journal of the Society of Materials Science, Japan, 1987, 36, 65-71.	0.2	2
107	Corrosion Behavior of Rusted Carbon Steel Coated with a Paint Containing Metallic Salt under Wet and Dry Cyclic Condition. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 797-803.	0.2	2
108	In Situ Observation of Corrosion Products and Surface Changes in Elevated Temperature and Pressure Solutions by Micro-Raman Spectroscopic Method. Zairyo To Kankyo/ Corrosion Engineering, 2011, 60, 445-448.	0.2	2

#	Article	IF	Citations
109	Structure of Corrosion Product Formed on Carbon Steel Covered with NiSO (sub) 4 (sub) -added Resin Coating under Sulfuric Acid Mist Environment Containing Chloride. Zairyo To Kankyo Corrosion Engineering, 2020, 69, 148-153.	0.2	2
110	Mechano-Chemical Polishing of Alloy 600 for Accelerated Crack Initiation in Simulated PWR Primary Water Environment and Three-Dimensional Crystallographic Characterization. Materials Transactions, 2020, 61, 1339-1345.	1.2	2
111	Application of the Scanning Vibrating Electrode Technique to Corrosion Fatigue. Corrosion Engineering, 1986, 35, 566-573.	0.1	1
112	Evaluation of Stress Corrosion Cracking Susceptibility of Type 304 Stainless Steel by Controlled Potential SSRT. Corrosion Engineering, 1988, 37, 138-143.	0.1	1
113	Scanning laser enhanced electrochemical microscopy for characterizing localized corrosion. Corrosion Science, 1991, 32, 669-672.	6.6	1
114	Effect of Environmental Factors for the Corrosion Behavior of Stainless Steels Exposed in River. Zairyo To Kankyo/ Corrosion Engineering, 2005, 54, 106-112.	0.2	1
115	Atmospheric Corrosion of Electroplated Cu Thin Film in Moist Oxygen Environment. ECS Transactions, 2006, 1, 243-247.	0.5	1
116	Corrosion Behavior and Bio-Compatibility of Lotus type Porous Stainless Steels. Zairyo To Kankyo/Corrosion Engineering, 2014, 63, 365-370.	0.2	1
117	Structural Changes of Passive Films during Cyclic Polarization of Stainless Steels in EMI-TFSI Ionic Liquid. Zairyo To Kankyo/ Corrosion Engineering, 2016, 65, 520-526.	0.2	1
118	Cell Activity on Type 316L Stainless Steel with Self-Organized Nanopores Formed by Anodic Polarization. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2018, 82, 269-276.	0.4	1
119	Controlling the electrical conductivity of ternary wurtzite-type and metastable \hat{l}^2 -AgGaO2 by impurity doping. AIP Advances, 2018, 8, 085203.	1.3	1
120	Fast Current-Controlled Polarization for the Analysis of Rapid Cathodic Process on Anodized Metal. Journal of the Electrochemical Society, 2019, 166, C3443-C3447.	2.9	1
121	Effects of Environmental Factors on Hydrogen Absorption and Sulfide Stress Cracking Susceptibility of Low Alloy Steel. Corrosion, 2020, 76, 698-706.	1.1	1
122	Inhibition of Pit Generation on SUS304 Stainless Steel in Chloride Solution by Ultra-Violet Light Irradiation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1997, 61, 249-250.	0.4	1
123	Formation and Properties of Ti-rich Oxide Layer on Fe-Ti Alloys by Square Wave Potential Pulse Polarization. Electrochemistry, 1999, 67, 1156-1158.	1.4	1
124	Fabrication of Porous Aluminium and Copper Media by Using Monotectic Solidification under a Magnetic Field. Materials Science Forum, 0, , 289-294.	0.3	1
125	Formation of Nanotubular Films Based on Anodization of Ti and Ti Alloys. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2018, 69, 600-604.	0.2	1
126	Numerical Simulation of Tribocorrosion of CoCr Alloy and Ti with Galvanic Coupling in Simulated Body Fluid. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 769-774.	0.2	1

#	Article	IF	Citations
127	Formation of titania nanotubes by anodization of Ti and its alloys and their biomedical applications. Denki Kagaku, 2021, 89, 334-339.	0.0	1
128	Noise Analysis of Corrosion Potential of Type 304 Stainless Steel in MgCl ₂ Solution. Corrosion Engineering, 1989, 38, 155-160.	0.1	0
129	Corrosion Behaviour of Chromium Implanted Type 304 Stainless Steel. Zairyo To Kankyo/ Corrosion Engineering, 1995, 44, 101-103.	0.2	0
130	Photoelectrochemical Response and Corrosion Property of Passive Films on Fe-18Cr Alloy. , 2006, , 285-290.		0
131	Degradation of the Mechanical Strength of Al Alloys by Electrochemically Introduced Hydrogen. ECS Transactions, 2006, 3, 185-190.	0.5	0
132	Fabrication of Porous Aluminium and Copper Media by Using Monotectic Solidification under a Magnetic Field. Materials Science Forum, 2006, 512, 289-294.	0.3	0
133	Initial Stage of SCC of Type 316L Stainless Steel in High Temperature and High Pressure Aqueous Solution. ECS Transactions, 2009, 16, 227-231.	0.5	0
134	Effect of Alloying Elements on Electrochemical Behavior of Fe-18Cr Alloy. ECS Transactions, 2009, 16, 313-319.	0.5	0
135	Formation of Oxide Nanotubes and Bamboo-Like Structures via Oxidation of Cu, Fe and Ni Nanowires. Materials Science Forum, 2010, 658, 232-235.	0.3	0
136	Advanced Analysis of Surface Films Formed on Passive Metals and Alloys Using X-ray Photoelectron Spectroscopy., 2013,, 69-81.		0
137	Probabilistic Study of SCC Initiation Stage Based on Statistical Analysis in 316L Austenitic Stainless Steel. , 2013, , .		0
138	Electrochemical Behavior of Type 316L Stainless Steel during Cyclic Deformation under Cell Culturing. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 303-307.	0.4	0
139	Electrochemical Properties of Oxide Films Formed on Cold Worked Alloy600 and Alloy690 in Simulated PWR Primary Water Environments. Zairyo To Kankyo/ Corrosion Engineering, 2015, 64, 501-507.	0.2	0
140	Anodization of Aluminum in Contact with Solid Electrolyte Containing Ionic Liquids. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2017, 68, 106-112.	0.2	0
141	Drug Release Characteristic of Type 316L Stainless Steel with Self-Organized Nanopores. Journal of Smart Processing, 2021, 10, 256-260.	0.1	0
142	TEM Observation of the Initial Stages of Oxidation on TiAl and TiAl-0.2Zr Intermetallic Compounds. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2000, 64, 502-507.	0.4	0
143	Crystallographical Characterization of Initiation of Intergranular Stress Corrosion Cracking of Alloy 600 in PWR Environment., 2011,, 1685-1698.		0
144	Changes in a Last Decade. Zairyo To Kankyo/ Corrosion Engineering, 2012, 61, 413.	0.2	0

#	Article	IF	CITATIONS
145	Effect of Trace Amounts of Salts on Properties of Passive Films Formed on SUS 304 Stainless Steel under Atmospheric Environment. Zairyo To Kankyo/ Corrosion Engineering, 2013, 62, 148-152.	0.2	O
146	Long-Term Evaluation of the Protective Effect against Interference Corrosion Inside High-Temperature and High-Pressure Water Pipelines. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 989-996.	0.2	0
147	Fatigue of Metallic Biomaterials. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2018, 69, 346-350.	0.2	O
148	Corrosion Behavior of Carbon Steel Coated with a Zinc-Rich Paint Containing Aluminum Sulfate and Barium Oxide under Wet and Dry Cyclic Conditions. Zairyo To Kankyo/ Corrosion Engineering, 2021, 70, 327-333.	0.2	0
149	Cathodic Polarization Behavior of Rusted Carbon Steels Exposed to Atmospheric Environment for Different Duration. ECS Meeting Abstracts, 2020, MA2020-02, 1314-1314.	0.0	0
150	Anodization of Titanium at Elevated Temperatures in Fluoride-Free Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 1158-1158.	0.0	0
151	(Invited) Structural Analysis of Rust Layer Formed on Carbon Steel Exposed to Atmospheric Corrosion Environments Using Synchrotron Radiation X-Rays. ECS Meeting Abstracts, 2020, MA2020-02, 1289-1289.	0.0	0
152	Effects of Oxygen on Corrosion Behavior of Pure Copper in Simulated Geological Disposal Environments. ECS Meeting Abstracts, 2020, MA2020-02, 1155-1155.	0.0	0
153	Numerical Simulation of Cathodic Process on Pure Titanium in a Simulated Body Fluid. ECS Meeting Abstracts, 2020, MA2020-02, 1157-1157.	0.0	0
154	(Invited) Characterization of Cathodic Properties of Anodized Titanium By a Fast Current-Controlled Polarization. ECS Meeting Abstracts, 2020, MA2020-02, 1244-1244.	0.0	0
155	Growth of Anodic TiO2 Nanotube Layers on Heat-Treated Titanium. ECS Meeting Abstracts, 2020, MA2020-02, 1201-1201.	0.0	0
156	Effects of Dissolved Oxygen Concentration in Electrolyte Film on Atmospheric Corrosion of Carbon Steel. ECS Meeting Abstracts, 2020, MA2020-02, 1305-1305.	0.0	0
157	Effects of Cathodic Process on Corrosion Fatigue of Type 316L Stainless Steel in 0.9 % NaCl Solution. ECS Meeting Abstracts, 2020, MA2020-02, 1309-1309.	0.0	0
158	Effects of Pulse Current on Proliferation Behavior and Activity of Osteoblast-like Cells on Pure Titanium. ECS Meeting Abstracts, 2020, MA2020-02, 1151-1151.	0.0	0
159	Reduction Behavior of Rusted Carbon Steel in Metallic Cation-Containing Solutions. ECS Meeting Abstracts, 2020, MA2020-02, 1159-1159.	0.0	0
160	Numerical Simulation of Tribocorrosion of Titanium with Galvanic Couple in Simulated Body Fluid. ECS Meeting Abstracts, 2020, MA2020-02, 1252-1252.	0.0	0
161	Electric Resistance Measurements of Anodic Oxide Films on Titanium and Zirconium. ECS Meeting Abstracts, 2020, MA2020-02, 1156-1156.	0.0	0
162	(Invited) Anodic Growth of Oxide Nanotube Layers on Titanium Alloys. ECS Meeting Abstracts, 2020, MA2020-02, 1241-1241.	0.0	0

Sніліі **F**илімото

#	Article	IF	CITATIONS
163	Corrosion Behavior of Rusted Carbon Steel Coated with Reactive Paint Under Wet and Dry Cyclic Condition. ECS Meeting Abstracts, 2020, MA2020-02, 1338-1338.	0.0	0
164	Corrosion Resistance of Titanium. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2022, 73, 33-37.	0.2	0
165	Dissolution and Repassivation of Metallic Biomaterials in Bio-mechanochemical Environment. Materia Japan, 2022, 61, 393-398.	0.1	0