
Maja Stojancevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6120941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Frontiers in Pharmacology, 2018, 9, 1283.	3.5	159
2	Application of bile acids in drug formulation and delivery. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2013, 7, 112-122.	1.1	100
3	Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Frontiers in Pharmacology, 2018, 9, 1382.	3.5	78
4	Stability and Release Kinetics of an Advanced Gliclazide-Cholic Acid Formulation: The Use of Artificial-Cell Microencapsulation in Slow Release Targeted Oral Delivery of Antidiabetics. Journal of Pharmaceutical Innovation, 2014, 9, 150-157.	2.4	58
5	The Impact of Farnesoid X Receptor Activation on Intestinal Permeability in Inflammatory Bowel Disease. Canadian Journal of Gastroenterology & Hepatology, 2012, 26, 631-637.	1.7	56
6	An advanced microencapsulated system: a platform for optimized oral delivery of antidiabetic drug-bile acid formulations. Pharmaceutical Development and Technology, 2015, 20, 702-709.	2.4	56
7	The Influence of Intestinal Tract and Probiotics on the Fate of Orally Administered Drugs. Current Issues in Molecular Biology, 2014, 16, 55-68.	2.4	47
8	Semisynthetic bile acids: a new therapeutic option for metabolic syndrome. Pharmacological Research, 2019, 146, 104333.	7.1	27
9	Potential Applications of Cliclazide in Treating Type 1 Diabetes Mellitus: Formulation with Bile Acids and Probiotics. European Journal of Drug Metabolism and Pharmacokinetics, 2018, 43, 269-280.	1.6	23
10	An Insight on Differences in Availability and Reimbursement of Orphan Medicines Among Serbia, Bulgaria and Sweden. Biotechnology and Biotechnological Equipment, 2012, 26, 3236-3241.	1.3	15
11	PAMPA model of gliclazide permeability: The impact of probiotic bacteria and bile acids. European Journal of Pharmaceutical Sciences, 2021, 158, 105668.	4.0	15
12	DPP-4 Inhibitors: Renoprotective Potential and Pharmacokinetics in Type 2 Diabetes Mellitus Patients with Renal Impairment. European Journal of Drug Metabolism and Pharmacokinetics, 2020, 45, 1-14.	1.6	13
13	The influence of bile salts on the distribution of simvastatin in the octanol/buffer system. Drug Development and Industrial Pharmacy, 2016, 42, 661-667.	2.0	9
14	The Role of Drug Metabolites in the Inhibition of Cytochrome P450 Enzymes. European Journal of Drug Metabolism and Pharmacokinetics, 2017, 42, 881-890.	1.6	9
15	Chenodeoxycholic Acid Pharmacology in Biotechnology and Transplantable Pharmaceutical Applications for Tissue Delivery: An Acute Preclinical Study. Cells, 2021, 10, 2437.	4.1	8
16	The Effect of Deoxycholic Acid on Chitosan-Enabled Matrices for Tissue Scaffolding and Injectable Nanogels. Gels, 2022, 8, 358.	4.5	8
17	In silico Discovery of Resveratrol Analogues as Potential Agents in Treatment of Metabolic Disorders. Current Pharmaceutical Design, 2019, 25, 3776-3783.	1.9	7
18	Gut Microbiota Metabolism of Azathioprine: A New Hallmark for Personalized Drug-Targeted Therapy of Chronic Inflammatory Bowel Disease. Frontiers in Pharmacology, 2022, 13, 879170.	3.5	7

MAJA STOJANCEVIC

#	Article	IF	CITATIONS
19	Influence of Bile Acids in Hydrogel Pharmaceutical Formulations on Dissolution Rate and Permeation of Clindamycin Hydrochloride. Gels, 2022, 8, 35.	4.5	4
20	Metabolic activity of gut microbiota and xenobiotics. Zbornik Matice Srpske Za Prirodne Nauke, 2015, , 47-55.	0.1	2
21	Plasma Distribution of Methotrexate and Its Polyglutamates in Pediatric Acute Lymphoblastic Leukemia: Preliminary Insights. European Journal of Drug Metabolism and Pharmacokinetics, 2021, , 1.	1.6	1
22	Differences in the use of medicines for peptic ulcer and gastro-esophageal reflux disease between Serbia, Croatia and Sweden. BMC Pharmacology & Toxicology, 2012, 13, .	2.4	0
23	Considerable differences in the utilisation of antidiabetics between Serbia and Scandinavian countries. BMC Pharmacology & Toxicology, 2012, 13, .	2.4	0
24	Ursodeoxycholic acid sensitizes human breast adenocarcinoma cells to doxorubicin-induced apoptosis. Toxicology Letters, 2017, 280, S317-S318.	0.8	0
25	The contribution of gut microflora to paracetamol metabolism. Archives of Biological Sciences, 2014, 66, 75-78.	0.5	0
26	IN VIVO EFFECTS OF URSODEOXYCHOLIC ACID ON DOXORUBICIN-INDUCED OXIDATIVE INJURY OF HEPATOCYTE. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-9-11.	0.0	0