Christos L Chochos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6120051/publications.pdf

Version: 2024-02-01

159585 182427 2,784 82 30 51 citations h-index g-index papers 83 83 83 3941 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Enhancing the lifetime of inverted perovskite solar cells using a new hydrophobic hole transport material. Energy Advances, 2022, 1, 312-320.	3.3	5
2	Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Nonâ€Fullerene Acceptors for Biometric Monitoring. Small, 2022, 18, e2200580.	10.0	39
3	Defect passivation in perovskite solar cells using an amino-functionalized BODIPY fluorophore. Sustainable Energy and Fuels, 2022, 6, 2570-2580.	4.9	7
4	Porous organic polymers in solar cells. Chemical Society Reviews, 2022, 51, 4465-4483.	38.1	21
5	Development of a Multi-Enzymatic Approach for the Modification of Biopolymers with Ferulic Acid. Biomolecules, 2022, 12, 992.	4.0	1
6	Far-Red to Near Infrared Emissive Aqueous Nanoparticles Based on a New Organic Material with Three BODIPY Dyes at the Periphery of the Core: A Combined Experimental and Theoretical Study. Electronic Materials, 2021, 2, 24-38.	1.9	1
7	Rational design of aqueous conjugated polymer nanoparticles as potential theranostic agents of breast cancer. Materials Chemistry Frontiers, 2021, 5, 4950-4962.	5.9	7
8	Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency. Nature Communications, 2021, 12, 1772.	12.8	27
9	Green Inks for the Fabrication of Organic Solar Cells: A Case Study on PBDTTPD:PC ₆₁ BM Bulk Heterojunctions. Advanced Energy and Sustainability Research, 2021, 2, 2100043.	5.8	7
10	PEDOT:PSS:sulfonium salt composite hole injection layers for efficient organic light emitting diodes. Organic Electronics, 2021, 93, 106155.	2.6	2
11	High efficiency blue organic light-emitting diodes with below-bandgap electroluminescence. Nature Communications, 2021, 12, 4868.	12.8	62
12	Structural Study of (Hydroxypropyl)Methyl Cellulose Microemulsion-Based Gels Used for Biocompatible Encapsulations. Nanomaterials, 2020, 10, 2204.	4.1	4
13	High performance conjugated terpolymers as electron donors in nonfullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 13422-13429.	5.5	6
14	The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets. Nature Energy, 2020, 5, 711-719.	39.5	214
15	Revealing the structural effects of non-fullerene acceptors on the performances of ternary organic photovoltaics under indoor light conditions. Nano Energy, 2020, 75, 104934.	16.0	30
16	New conjugated polymer nanoparticles with high photoluminescence quantum yields for far-red and near infrared fluorescence bioimaging. Materials Chemistry Frontiers, 2020, 4, 2357-2369.	5.9	25
17	Unraveling the Complex Nanomorphology of Ternary Organic Solar Cells with Multimodal Analytical Transmission Electron Microscopy. Solar Rrl, 2020, 4, 2000114.	5.8	7
18	Highly Efficient Indoor Organic Solar Cells by Voltage Loss Minimization through Fine-Tuning of Polymer Structures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36905-36916.	8.0	49

#	Article	IF	Citations
19	Monitoring fluorescent calcium signals in neural cells with organic photodetectors. Journal of Materials Chemistry C, 2019, 7, 9049-9056.	5.5	7
20	Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules. Progress in Polymer Science, 2019, 91, 51-79.	24.7	36
21	Effect of Aryl Substituents and Fluorine Addition on the Optoelectronic Properties and Organic Solar Cell Performance of a High Efficiency Indacenodithienothiopheneâ \in xi>altx/i>â \in Quinoxaline Ï \in â \in Conjugated Polymer. Macromolecular Chemistry and Physics, 2019, 220, 1800418.	2.2	4
22	Thermal Stabilization of the Bulkâ€Heterojunction Morphology in Polymer:Fullerene Solar Cells Using a Bisazide Cross‣inker. Solar Rrl, 2019, 3, 1800266.	5.8	11
23	Enhancement of the Power-Conversion Efficiency of Organic Solar Cells via Unveiling an Appropriate Rational Design Strategy in Indacenodithiophene-alt-quinoxaline π-Conjugated Polymers. ACS Applied Materials & Diterfaces, 2018, 10, 10236-10245.	8.0	11
24	α,β-Unsubstituted <i>meso</i> -positioning thienyl BODIPY: a promising electron deficient building block for the development of near infrared (NIR) p-type donor–acceptor (D–A) conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 4030-4040.	5.5	22
25	New nâ€Type Solution Processable All Conjugated Polymer Network: Synthesis, Optoelectronic Characterization, and Application in Organic Solar Cells. Macromolecular Rapid Communications, 2018, 39, 1700629.	3.9	7
26	Synthesis of Dâ€ <i>Ï€</i> â€Aâ€ <i>Ï€</i> type benzodithiopheneâ€quinoxaline copolymers by direct arylation and their application in organic solar cells. Journal of Polymer Science Part A, 2018, 56, 1457-1467.	2.3	20
27	High-Performance Organic Photodetectors from a High-Bandgap Indacenodithiophene-Based π-Conjugated Donor–Acceptor Polymer. ACS Applied Materials & Interfaces, 2018, 10, 12937-12946.	8.0	42
28	4 <i>H</i> -1,2,6-Thiadiazine-containing donor–acceptor conjugated polymers: synthesis, optoelectronic characterization and their use in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 3658-3667.	5.5	10
29	Effects of alkyl side chains positioning and presence of fused aromatic units in the backbone of lowâ€bandgap diketopyrrolopyrrole copolymers on the optoelectronic properties of organic solar cells. Journal of Polymer Science Part A, 2018, 56, 138-146.	2.3	9
30	Experimental and theoretical investigations on the optical and electrochemical properties of π-conjugated donor-acceptor-donor (DAD) compounds toward a universal model. Journal of Chemical Physics, 2018, 149, 124902.	3.0	10
31	An Electron-Transporting Thiazole-Based Polymer Synthesized Through Direct (Hetero)Arylation Polymerization. Molecules, 2018, 23, 1270.	3.8	5
32	Suppressing the Surface Recombination and Tuning the Open-Circuit Voltage of Polymer/Fullerene Solar Cells by Implementing an Aggregative Ternary Compound. ACS Applied Materials & Diterfaces, 2018, 10, 28803-28811.	8.0	15
33	Porous organic polymers as emerging new materials for organic photovoltaic applications: current status and future challenges. Materials Horizons, 2017, 4, 546-556.	12.2	125
34	BODIPY-based polymeric dyes as emerging horizon materials for biological sensing and organic electronic applications. Progress in Polymer Science, 2017, 71, 26-52.	24.7	67
35	Beyond Donor-Acceptor (D-A) Approach: Structure-Optoelectronic Properties-Organic Photovoltaic Performance Correlation in New D-A ₁ -D-A ₂ Low-Bandgap Conjugated Polymers. Macromolecular Rapid Communications, 2017, 38, 1600720.	3.9	20
36	Highly Efficient Solid-State Near-infrared Organic Light-Emitting Diodes incorporating A-D-A Dyes based on α,β-unsubstituted "BODIPY―Moieties. Scientific Reports, 2017, 7, 1611.	3.3	112

#	Article	IF	Citations
37	Optimization of the power conversion efficiency in high bandgap pyridopyridinedithiophene-based conjugated polymers for organic photovoltaics by the random terpolymer approach. European Polymer Journal, 2017, 91, 92-99.	5.4	7
38	Rational Design of Highâ€Performance Wideâ€Bandgap (â‰^2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (â‰^1 V). Macromolecular Rapid Communications, 2017, 38, 1600614.	3.9	20
39	Impact of the Catalytic System on the Formation of Structural Defects for the Synthesis of Wellâ€Defined Donor–Acceptor Semiconducting Polymers. Macromolecular Chemistry and Physics, 2017, 218, 1700283.	2.2	3
40	The role of chemical structure in indacenodithienothiophene- <i>alt</i> -benzothiadiazole copolymers for high performance organic solar cells with improved photo-stability through minimization of burn-in loss. Journal of Materials Chemistry A, 2017, 5, 25064-25076.	10.3	24
41	Indacenodithienothiophene-Based Ternary Organic Solar Cells. Frontiers in Energy Research, 2017, 4, .	2.3	8
42	Enhancement of the Power Conversion Efficiency in Organic Photovoltaics by Unveiling the Appropriate Polymer Backbone Enlargement Approach. Advanced Functional Materials, 2016, 26, 1840-1848.	14.9	28
43	Organic Solar Cells: An Alternative Strategy to Adjust the Recombination Mechanism of Organic Photovoltaics by Implementing Ternary Compounds (Adv. Energy Mater. 24/2015). Advanced Energy Materials, 2015, 5, .	19.5	1
44	Photophysics of Molecularâ€Weightâ€Induced Losses in Indacenodithienothiopheneâ€Based Solar Cells. Advanced Functional Materials, 2015, 25, 4898-4907.	14.9	61
45	Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance. Macromolecular Rapid Communications, 2015, 36, 1778-1797.	3.9	49
46	An Alternative Strategy to Adjust the Recombination Mechanism of Organic Photovoltaics by Implementing Ternary Compounds. Advanced Energy Materials, 2015, 5, 1501527.	19.5	56
47	The impact of thienothiophene isomeric structures on the optoelectronic properties and photovoltaic performance in quinoxaline based donor–acceptor copolymers. Polymer Chemistry, 2015, 6, 3098-3109.	3.9	24
48	Ultra low band gap $\hat{l}\pm,\hat{l}^2$ -unsubstituted BODIPY-based copolymer synthesized by palladium catalyzed cross-coupling polymerization for near infrared organic photovoltaics. Journal of Materials Chemistry A, 2015, 3, 16279-16286.	10.3	49
49	Using pyridal [2,1,3] thiadiazole as an acceptor unit in a low band-gap copolymer for photovoltaic applications. Organic Electronics, 2015, 23, 171-178.	2.6	5
50	Influence of the Electron Deficient Coâ€Monomer on the Optoelectronic Properties and Photovoltaic Performance of Dithienogermoleâ€based Coâ€Polymers. Advanced Functional Materials, 2014, 24, 678-687.	14.9	59
51	The role of the ethynylene bond on the optical and electronic properties of diketopyrrolopyrrole copolymers. RSC Advances, 2014, 4, 58404-58411.	3.6	3
52	Rational design on n-type organic materials for high performance organic photovoltaics. RSC Advances, 2013, 3, 7160.	3.6	138
53	Novel BODIPY-based conjugated polymers donors for organic photovoltaic applications. RSC Advances, 2013, 3, 10221.	3.6	33
54	Theoretical study of phenyl-substituted indacenodithiophene copolymers for high performance organic photovoltaics. Journal of Chemical Physics, 2013, 138, 064901.	3.0	17

#	Article	IF	CITATIONS
55	2-(2,3,4,5,6-Pentafluorophenyl)-1H-benzo[d]imidazole, a fluorine-rich building block for the preparation of conjugated polymer donors for organic solar cell applications. Polymer Chemistry, 2012, 3, 2236.	3.9	13
56	3,6â€Dialkylthieno[3,2â€∢i>b⟨/i>]thiophene moiety as a soluble and electron donating unit preserving the coplanarity of photovoltaic low band gap copolymers. Journal of Polymer Science Part A, 2012, 50, 1861-1868.	2.3	39
57	Optimization of the side-chain density to improve the charge transport and photovoltaic performances of a low band gap copolymer. Organic Electronics, 2012, 13, 114-120.	2.6	32
58	High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 2011, 196, 9382-9390.	7.8	45
59	How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Progress in Polymer Science, 2011, 36, 1326-1414.	24.7	329
60	Electronic Properties and Photovoltaic Performances of a Series of Oligothiophene Copolymers Incorporating Both Thieno[3,2â \leqslant i>b) thiophene and 2,1,3â \leqslant Benzothiadiazole Moieties. Macromolecular Rapid Communications, 2010, 31, 651-656.	3.9	35
61	Impact of the Alkyl Side Chains on the Optoelectronic Properties of a Series of Photovoltaic Low-Band-Gap Copolymers. Macromolecules, 2010, 43, 9779-9786.	4.8	122
62	Hyperbranched Polymers for Photolithographic Applications – Towards Understanding the Relationship between Chemical Structure of Polymer Resin and Lithographic Performances. Advanced Materials, 2009, 21, 1121-1125.	21.0	41
63	Endâ€functionalization of semiconducting species with dendronized terpyridine–Ru(II)–terpyridine complexes. Journal of Polymer Science Part A, 2009, 47, 1939-1952.	2.3	11
64	Impact of molecular structure of polymer in 193 nm resist performance. Microelectronic Engineering, 2009, 86, 796-799.	2.4	5
65	A [3,2-b]thienothiophene-alt-benzothiadiazole copolymer for photovoltaic applications: design, synthesis, material characterization and device performances. Journal of Materials Chemistry, 2009, 19, 4946.	6.7	61
66	Novel Hybrid Materials Consisting of Regioregular Poly(3â€octylthiophene)s Covalently Attached to Singleâ€Wall Carbon Nanotubes. Chemistry - A European Journal, 2008, 14, 8715-8724.	3.3	32
67	The Role of Intrachain and Interchain Interactions of Regioregular Poly(3-octylthiophene) Chains on the Optical Properties of a New Amphiphilic Conjugated Random Copolymer in Solution. Langmuir, 2008, 24, 11103-11110.	3.5	16
68	Immobilization of Oligoquinoline Chains on Single-Wall Carbon Nanotubes and Their Optical Behavior. Macromolecules, 2008, 41, 1825-1830.	4.8	27
69	Synthesis and Characterization of Random Copolymers Combining Terfluorene Segments and Hole or Electron Transporting Moieties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 923-930.	2.2	1
70	Novel Brush-Type Copolymers Bearing Thiophene Backbone and Side Chain Quinoline Blocks. Synthesis and Their Use as a Compatibilizer in Thiopheneâ "Quinoline Polymer Blends. Macromolecules, 2007, 40, 921-927.	4.8	64
71	Synthesis of a Soluble n-Type Cyano Substituted Polythiophene Derivative:  A Potential Electron Acceptor in Polymeric Solar Cells. Journal of Physical Chemistry C, 2007, 111, 10732-10740.	3.1	46
72	New rod–coil block copolymers consisting of terfluorene segments and electron transporting units as the flexible blocks. European Polymer Journal, 2007, 43, 5065-5075.	5.4	7

#	Article	IF	CITATIONS
73	Synthesis and Optical Properties on a Series of Polyethers Incorporating Terfluorene Segments and Methylene Spacers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 419-431.	2.2	6
74	Thermally Stable Blue Emitting Terfluorene Block Copolymers. Journal of Physical Chemistry B, 2006, 110, 4657-4662.	2.6	17
75	Synthesis, optical and morphological characterization of soluble main chain 1,3,4-oxadiazole copolyarylethersâ€"potential candidates for solar cells applications as electron acceptors. Polymer, 2005, 46, 4654-4663.	3.8	34
76	Rodâ^'Coil Block Copolymers Incorporating Terfluorene Segments for Stable Blue Light Emission. Journal of Physical Chemistry B, 2005, 109, 8755-8760.	2.6	77
77	On the Origin of Color Degradation in Polyfluorenes – Block Copolymer Approach for Stable Blue Light Emission. Materials Research Society Symposia Proceedings, 2004, 856, BB2.9.1.	0.1	0
78	Bulk Heterojunction Photovoltaic Cells from Polymer Mixtures with Soluble Oxadiazole and Quinoline Polymers as Electron Acceptors. Materials Research Society Symposia Proceedings, 2004, 836, L5.16.1.	0.1	0
79	Influence of the Coil Block on the Properties of Rodâ^'Coil Diblock Copolymers with Oligofluorene as the Rigid Segment. Macromolecules, 2004, 37, 2502-2510.	4.8	70
80	Synthesis and characterization of conjugated polymers and their blends for optoelectronic applications. Macromolecular Symposia, 2004, 205, 19-32.	0.7	7
81	CORRELATION OF THE MOLECULAR ORIENTATION AND PHOTONIC PROPERTIES OF RIGID-FLEXIBLE AROMATIC POLYETHERS USING FT-IR LINEAR DICHROISM AND PHOTOLUMINESCENCE SPECTROSCOPIC TECHNIQUES. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 1317-1333.	2.2	0
82	Simple syntheses of cyclic polyamines using selectively N-tritylated polyamines and succinic anhydride. Tetrahedron Letters, 2002, 43, 2593-2596.	1.4	15