
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6118183/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF                | CITATIONS         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 1  | Cashew oral immunotherapy for desensitizing cashewâ€pistachio allergy (NUT CRACKER study). Allergy:<br>European Journal of Allergy and Clinical Immunology, 2022, 77, 1863-1872.                                    | 5.7               | 25                |
| 2  | Identification of a defensin as novel allergen in celery root: ApiÂgÂ7 as a missing link in the diagnosis of<br>celery allergy?. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1294-1296. | 5.7               | 6                 |
| 3  | A new vicilinâ€like allergen in hazelnut giving rise to a spectrum of IgEâ€binding lowâ€molecularâ€weight<br>Nâ€terminal fragments. Clinical and Experimental Allergy, 2022, 52, 1208-1212.                         | 2.9               | 4                 |
| 4  | Walnut Allergy Across Europe: Distribution of Allergen Sensitization Patterns and Prediction of Severity. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 225-235.e10.                            | 3.8               | 21                |
| 5  | Cyclophilin – A novel crossâ€reactive determinant in peanut. Clinical and Experimental Allergy, 2021, 51,<br>620-622.                                                                                               | 2.9               | 12                |
| 6  | Component-Resolved Diagnosis of American Cockroach (Periplaneta americana) Allergy in Patients<br>From Different Geographical Areas. Frontiers in Allergy, 2021, 2, 691627.                                         | 2.8               | 4                 |
| 7  | Carbohydrate epitopes currently recognized as targets for IgE antibodies. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2383-2394.                                                        | 5.7               | 36                |
| 8  | Clinical and Molecular Characterization of Walnut and Pecan Allergy (NUT CRACKER Study). Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 157-165.e2.                                              | 3.8               | 40                |
| 9  | Identification of the aminoâ€ŧerminal fragment of Ara h 1 as a major target of the IgEâ€binding activity in the basic peanut protein fraction. Clinical and Experimental Allergy, 2020, 50, 401-405.                | 2.9               | 19                |
| 10 | Sensitization to storage proteins in peanut and hazelnut is associated with higher levels of inflammatory markers in asthma. Clinical and Molecular Allergy, 2020, 18, 11.                                          | 1.8               | 9                 |
| 11 | Characterization of a 7 kDa pollen allergen belonging to the gibberellinâ€regulated protein family from three Cupressaceae species. Clinical and Experimental Allergy, 2020, 50, 964-972.                           | 2.9               | 26                |
| 12 | Efficacy and Safety of Sesame Oral Immunotherapy—A Real-World, Single-Center Study. Journal of<br>Allergy and Clinical Immunology: in Practice, 2019, 7, 2775-2781.e2.                                              | 3.8               | 46                |
| 13 | Pru p 7 sensitization is a predominant cause of severe, cypress pollenâ€associated peach allergy. Clinical and Experimental Allergy, 2019, 49, 526-536.                                                             | 2.9               | 48                |
| 14 | Allergen Recognition Patterns in Walnut Allergy Are Age Dependent and Correlate with the Severity<br>of Allergic Reactions. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1560-1567.e6.         | 3.8               | 27                |
| 15 | Walnut oral immunotherapy for desensitisation of walnut and additional tree nut allergies (Nut) Tj ETQq1 1 0.7<br>312-321.                                                                                          | ′84314 rgB<br>5.6 | T /Overlock<br>65 |
| 16 | Identification and molecular characterization of allergenic nonâ€specific lipidâ€transfer protein from<br>durum wheat ( <i>Triticum turgidum</i> ). Clinical and Experimental Allergy, 2019, 49, 120-129.           | 2.9               | 14                |
| 17 | Sensitization profiles to hazelnut allergens across the United States. Annals of Allergy, Asthma and<br>Immunology, 2019, 122, 111-116.e1.                                                                          | 1.0               | 17                |
| 18 | WHO/IUIS Allergen Nomenclature: Providing a common language. Molecular Immunology, 2018, 100,<br>3-13.                                                                                                              | 2.2               | 162               |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Identification and implication of an allergenic PRâ€10 protein from walnut in birch pollen associated walnut allergy. Molecular Nutrition and Food Research, 2017, 61, 1600902.                                        | 3.3 | 23        |
| 20 | The BASALIT multicenter trial: Gly m 4 quantification for consistency control of challenge meal batches and toward Gly m 4 threshold data. Molecular Nutrition and Food Research, 2017, 61, 1600527.                   | 3.3 | 13        |
| 21 | Association of Clinical Reactivity with Sensitization to Allergen Components in Multifood-Allergic<br>Children. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1325-1334.e4.                        | 3.8 | 60        |
| 22 | Crystal structure of Pla l 1 reveals both structural similarity and allergenic divergence within the<br>Ole e 1–like protein family. Journal of Allergy and Clinical Immunology, 2017, 140, 277-280.                   | 2.9 | 14        |
| 23 | Sensitization profiles to peanut allergens across the United States. Annals of Allergy, Asthma and<br>Immunology, 2017, 119, 262-266.e1.                                                                               | 1.0 | 29        |
| 24 | Endolysosomal Degradation of Allergenic Ole e 1-Like Proteins: Analysis of Proteolytic Cleavage Sites<br>Revealing T Cell Epitope-Containing Peptides. International Journal of Molecular Sciences, 2017, 18,<br>1780. | 4.1 | 9         |
| 25 | Predominant Api m 10 sensitization as risk factor for treatment failure in honey bee venom immunotherapy. Journal of Allergy and Clinical Immunology, 2016, 138, 1663-1671.e9.                                         | 2.9 | 93        |
| 26 | Perceived Food Hypersensitivity Relates to Poor Asthma Control and Quality of Life in Young Non-Atopic Asthmatics. PLoS ONE, 2015, 10, e0124675.                                                                       | 2.5 | 7         |
| 27 | Hazelnut allergy across Europe dissected molecularly: AÂEuroPrevall outpatient clinic survey. Journal of Allergy and Clinical Immunology, 2015, 136, 382-391.                                                          | 2.9 | 92        |
| 28 | Food allergy in the Netherlands: differences in clinical severity, causative foods, sensitization and DBPCFC between community and outpatients. Clinical and Translational Allergy, 2015, 5, 8.                        | 3.2 | 13        |
| 29 | ldentification of Sola I 4 as Bet v 1 homologous pathogenesis related-10 allergen in tomato fruits.<br>Molecular Nutrition and Food Research, 2015, 59, 582-592.                                                       | 3.3 | 27        |
| 30 | Sensitization to cashew nut 2S albumin, AnaÂoÂ3,Âis highly predictive of cashew and pistachio allergy in<br>Greek children. Journal of Allergy and Clinical Immunology, 2015, 136, 192-194.                            | 2.9 | 63        |
| 31 | IgE Abs to Der p 1 and Der p 2 as diagnostic markers of house dust mite allergy as defined by a bronchoprovocation test. Allergology International, 2015, 64, 90-95.                                                   | 3.3 | 31        |
| 32 | Specific IgE to fish extracts does not predict allergy to specific species within an adult fish allergic population. Clinical and Translational Allergy, 2014, 4, 27.                                                  | 3.2 | 24        |
| 33 | Component resolution reveals additional major allergens in patients with honeybee venom allergy.<br>Journal of Allergy and Clinical Immunology, 2014, 133, 1383-1389.e6.                                               | 2.9 | 152       |
| 34 | Tenâ€year review reveals changing trends and severity of allergic reactions to nuts and other foods.<br>Acta Paediatrica, International Journal of Paediatrics, 2014, 103, 862-867.                                    | 1.5 | 41        |
| 35 | Enlarging the Toolbox for Allergen Epitope Definition with an Allergen-Type Model Protein. PLoS ONE, 2014, 9, e111691.                                                                                                 | 2.5 | 18        |
| 36 | Peanut-specific IgE antibodies in asymptomatic Ghanaian children possibly caused by carbohydrate<br>determinant cross-reactivity. Journal of Allergy and Clinical Immunology, 2013, 132, 639-647.                      | 2.9 | 75        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. Journal of Allergy and Clinical Immunology, 2013, 132, 393-399.                                       | 2.9 | 202       |
| 38 | Identification of allergen-resolved threshold doses of carrot (Daucus carota) by means of oral challenge and ELISA. Journal of Allergy and Clinical Immunology, 2013, 131, 1711-1713.e2.                                                    | 2.9 | 9         |
| 39 | Recombinant Mal d 1 is a reliable diagnostic tool for birch pollen allergen–associated apple allergy.<br>Journal of Allergy and Clinical Immunology, 2013, 132, 1008-1010.                                                                  | 2.9 | 20        |
| 40 | Oral exposure to Mal d 1 affects the immune response in patients with birch pollen allergy. Journal of Allergy and Clinical Immunology, 2013, 131, 94-102.                                                                                  | 2.9 | 32        |
| 41 | Kiwifruit allergy across Europe: Clinical manifestation and IgE recognition patterns to kiwifruit allergens. Journal of Allergy and Clinical Immunology, 2013, 131, 164-171.                                                                | 2.9 | 82        |
| 42 | Involvement of Can f 5 in a Case of Human Seminal Plasma Allergy. International Archives of Allergy and Immunology, 2012, 159, 143-146.                                                                                                     | 2.1 | 33        |
| 43 | Comparable IgE reactivity to natural and recombinant Api m 1 in cross-reactive carbohydrate<br>determinant–negative patients with bee venom allergy. Journal of Allergy and Clinical Immunology,<br>2012, 130, 276-278.                     | 2.9 | 47        |
| 44 | Peanut component Ara h 8 sensitization and tolerance toÂpeanut. Journal of Allergy and Clinical<br>Immunology, 2012, 130, 468-472.                                                                                                          | 2.9 | 129       |
| 45 | Birch pollen–related food allergy: Clinical aspects and the role of allergen-specific IgE and IgG4 antibodies. Journal of Allergy and Clinical Immunology, 2011, 127, 616-622.e1.                                                           | 2.9 | 198       |
| 46 | Generation of a comprehensive panel of crustacean allergens from the North Sea Shrimp Crangon crangon. Molecular Immunology, 2011, 48, 1983-1992.                                                                                           | 2.2 | 112       |
| 47 | Development and in-house validation of allergen-specific ELISA tests for the quantification of Dau c 1.01, Dau c 1.02 and Dau c 4 in carrot extracts (Daucus carota). Analytical and Bioanalytical Chemistry, 2011, 399, 935-943.           | 3.7 | 14        |
| 48 | Yeast profilin complements profilin deficiency in transgenic tomato fruits and allows development of hypoallergenic tomato fruits. FASEB Journal, 2010, 24, 4939-4947.                                                                      | 0.5 | 22        |
| 49 | Comparison of IgE-Binding Capacity, Cross-Reactivity and Biological Potency of Allergenic<br>Non-Specific Lipid Transfer Proteins from Peach, Cherry and Hazelnut. International Archives of<br>Allergy and Immunology, 2010, 153, 335-346. | 2.1 | 37        |
| 50 | Component-resolved diagnosis of kiwifruit allergy with purified natural and recombinant kiwifruit allergens. Journal of Allergy and Clinical Immunology, 2010, 125, 687-694.e1.                                                             | 2.9 | 95        |
| 51 | Pichia pastoris is superior to E. coli for the production of recombinant allergenic non-specific lipid-transfer proteins. Protein Expression and Purification, 2010, 69, 68-75.                                                             | 1.3 | 30        |
| 52 | Clinical, Anamnestic and Serological Features of Peach Allergy in Portugal. International Archives of<br>Allergy and Immunology, 2009, 149, 65-73.                                                                                          | 2.1 | 25        |
| 53 | Prostatic kallikrein: A new major dog allergen. Journal of Allergy and Clinical Immunology, 2009, 123, 362-368.e3.                                                                                                                          | 2.9 | 131       |
| 54 | Component-resolved in vitro diagnosis of hazelnut allergy in Europe. Journal of Allergy and Clinical<br>Immunology, 2009, 123, 1134-1141.e3.                                                                                                | 2.9 | 137       |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Relevance of IgE binding to short peptides for the allergenic activity of food allergens. Journal of<br>Allergy and Clinical Immunology, 2009, 124, 328-336.e6.                                                                                           | 2.9 | 73        |
| 56 | Assessment of component-resolved in vitro diagnosis of celeriac allergy. Journal of Allergy and Clinical Immunology, 2009, 124, 1273-1281.e2.                                                                                                             | 2.9 | 53        |
| 57 | Characterization of Bet v 1-related allergens from kiwifruit relevant for patients with combined<br>kiwifruit and birch pollen allergy. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, NA-NA.                                                   | 3.3 | 23        |
| 58 | Molecular characterisation of Lac s 1, the major allergen from lettuce (Lactuca sativa). Molecular<br>Immunology, 2007, 44, 2820-2830.                                                                                                                    | 2.2 | 35        |
| 59 | lgEâ€Mediated food allergy diagnosis: Current status and new perspectives. Molecular Nutrition and<br>Food Research, 2007, 51, 135-147.                                                                                                                   | 3.3 | 155       |
| 60 | Component-resolved diagnostics in food allergy. Current Opinion in Allergy and Clinical Immunology, 2006, 6, 234-240.                                                                                                                                     | 2.3 | 98        |
| 61 | Recombinant tropomyosin from <i>Penaeus aztecus</i> (rPen a 1) for measurement of specific immuno―<br>globulin E antibodies relevant in food allergy to crustaceans and other invertebrates. Molecular<br>Nutrition and Food Research, 2004, 48, 370-379. | 3.3 | 41        |
| 62 | Strong allergenicity of Pru av 3, the lipid transfer protein from cherry, is related to high stability<br>against thermal processing and digestion. Journal of Allergy and Clinical Immunology, 2004, 114,<br>900-907.                                    | 2.9 | 161       |
| 63 | Identification of cross-reactive and genuine Parietaria judaica pollen allergens. Journal of Allergy and<br>Clinical Immunology, 2003, 111, 974-979.                                                                                                      | 2.9 | 62        |
| 64 | Characteristics and Immunobiology of Grass Pollen Allergens. International Archives of Allergy and Immunology, 2003, 130, 87-107.                                                                                                                         | 2.1 | 304       |
| 65 | Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB Journal, 2002,<br>16, 414-416.                                                                                                                                       | 0.5 | 420       |
| 66 | Purification, Structural and Immunological Characterization of a Timothy Grass (Phleum pratense)<br>Pollen Allergen, Phl p 4, with Cross-Reactive Potential. Biological Chemistry, 2002, 383, 1383-96.                                                    | 2.5 | 21        |
| 67 | Identification of an Allergen Related to Phl p 4, a Major Timothy Grass Pollen Allergen, in Pollens,<br>Vegetables, and Fruits by Immunogold Electron Microscopy. Biological Chemistry, 2002, 383, 1441-5.                                                | 2.5 | 14        |
| 68 | Recombinant Marker Allergens: Diagnostic Gatekeepers for the Treatment of Allergy. International<br>Archives of Allergy and Immunology, 2002, 127, 259-268.                                                                                               | 2.1 | 149       |
| 69 | Induction of antibody responses to new B cell epitopes indicates vaccination character of allergen<br>immunotherapy. European Journal of Immunology, 1999, 29, 2026-2036.                                                                                 | 2.9 | 138       |
| 70 | BIACORE Analysis of Histidine-Tagged Proteins Using a Chelating NTA Sensor Chip. Analytical<br>Biochemistry, 1997, 252, 217-228.                                                                                                                          | 2.4 | 337       |
| 71 | A functional promoter shift of a chloroplast gene: a transcriptional fusion between a novel psbA<br>gene copy and the trnK (UUU) gene in Pinus contorta Plant Journal, 1992, 2, 875-886.                                                                  | 5.7 | 4         |
| 72 | A functional promoter shift of a chloroplast gene: a transcriptional fusion between a novel psbA<br>gene copy and the trnK(UUU) gene in Pinus contorta. Plant Journal, 1992, 2, 875-886.                                                                  | 5.7 | 4         |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Structure and regulation of photosynthesis genes in Pinus sylvestris (Scots pine) and Pinus contorta<br>(lodgepole pine). Forest Ecology and Management, 1991, 43, 287-300. | 3.2 | 4         |
| 74 | Duplication of the psbA gene in the chloroplast genome of two Pinus species. Molecular Genetics and Genomics, 1991, 226, 345-52.                                            | 2.4 | 43        |
| 75 | Homologues of the green algal gidA gene and the liverwort frxC gene are present on the chloroplast genomes of conifers. Plant Molecular Biology, 1991, 17, 787-798.         | 3.9 | 67        |
| 76 | The chloroplast genome of the gymnosperm Pinus contorta: a physical map and a complete collection of overlapping clones. Current Genetics, 1991, 20, 161-166.               | 1.7 | 42        |
| 77 | The chloroplast genomes of conifers lack one of the rRNA-encoding inverted repeats. Molecular<br>Genetics and Genomics, 1988, 212, 6-10.                                    | 2.4 | 44        |