
Jay D Horton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6117586/publications.pdf Version: 2024-02-01

IAV D HORTON

#	Article	IF	CITATIONS
1	Response to Kunos et al. and Lotersztajn and Mallat. Journal of Clinical Investigation, 2022, 132, .	8.2	1
2	CB1Rs in VMH neurons regulate glucose homeostasis but not body weight. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E146-E155.	3.5	9
3	Decreased caveolae in AGPAT2 lacking adipocytes is independent of changes in cholesterol or sphingolipid levels: A whole cell and plasma membrane lipidomic analysis of adipogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166167.	3.8	5
4	Cannabinoid receptor 1 signaling in hepatocytes and stellate cells does not contribute to NAFLD. Journal of Clinical Investigation, 2021, 131, .	8.2	23
5	The impact of endotrophin on the progression of chronic liver disease. Experimental and Molecular Medicine, 2020, 52, 1766-1776.	7.7	25
6	Delisting <i>STAP1</i> . Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 847-849.	2.4	10
7	Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 2020, 41, 2313-2330.	2.2	776
8	Intravascular triglyceride lipolysis becomes crystal clear. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1480-1482.	7.1	7
9	Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. Journal of Lipid Research, 2018, 59, 475-487.	4.2	148
10	Adipocyte Xbp1s overexpression drives uridine production and reduces obesity. Molecular Metabolism, 2018, 11, 1-17.	6.5	34
11	Hepatocyte toll-like receptor 4 deficiency protects against alcohol-induced fatty liver disease. Molecular Metabolism, 2018, 14, 121-129.	6.5	35
12	Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1189-1194.	7.1	143
13	Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 2017, 38, 2459-2472.	2.2	2,292
14	Inhibition of PCSK9 does not improve lipopolysaccharide-induced mortality in mice. Journal of Lipid Research, 2017, 58, 1661-1669.	4.2	41
15	An adipo-biliary-uridine axis that regulates energy homeostasis. Science, 2017, 355, .	12.6	90
16	Acetyl CoA Carboxylase Inhibition Reduces Hepatic Steatosis but Elevates Plasma Triglycerides in Mice and Humans: A Bedside to Bench Investigation. Cell Metabolism, 2017, 26, 394-406.e6.	16.2	265
17	A Highly Durable RNAi Therapeutic Inhibitor of PCSK9. New England Journal of Medicine, 2017, 376, 41-51.	27.0	571
18	Expression of SREBP-1c Requires SREBP-2-mediated Generation of a Sterol Ligand for LXR in Livers of Mice. ELife, 2017, 6, .	6.0	82

JAY D HORTON

#	Article	IF	CITATIONS
19	AGPAT2 is essential for postnatal development and maintenance of white and brown adipose tissue. Molecular Metabolism, 2016, 5, 491-505.	6.5	36
20	CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nature Communications, 2016, 7, 10961.	12.8	165
21	Mogat1 deletion does not ameliorate hepatic steatosis in lipodystrophic (Agpat2â^'/â^') or obese (ob/ob) mice. Journal of Lipid Research, 2016, 57, 616-630.	4.2	29
22	MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nature Medicine, 2015, 21, 1280-1289.	30.7	203
23	Deletion of ELOVL6 blocks the synthesis of oleic acid but does not prevent the development of fatty liver or insulin resistance. Journal of Lipid Research, 2014, 55, 2597-2605.	4.2	61
24	Acetate Dependence of Tumors. Cell, 2014, 159, 1591-1602.	28.9	524
25	An acetate switch regulates stress erythropoiesis. Nature Medicine, 2014, 20, 1018-1026.	30.7	62
26	Abstract 61: LXR Agonist Treatment of Nonhuman Primates Increases LDL Cholesterol due to Decreased Hepatic LDL Receptor Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0
27	The Scap/SREBP Pathway Is Essential for Developing Diabetic Fatty Liver and Carbohydrate-Induced Hypertriglyceridemia in Animals. Cell Metabolism, 2012, 15, 240-246.	16.2	263
28	Human Fatty Liver Disease: Old Questions and New Insights. Science, 2011, 332, 1519-1523.	12.6	1,780
29	Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. Journal of Lipid Research, 2009, 50, 412-423.	4.2	181
30	PCSK9: a convertase that coordinates LDL catabolism. Journal of Lipid Research, 2009, 50, S172-S177.	4.2	517
31	Unfolding Lipid Metabolism. Science, 2008, 320, 1433-1434.	12.6	11
32	Statins Induce Plasma Levels of Proprotein Convertase Subtilisin/Kexin Type 9. FASEB Journal, 2008, 22, 1040.4.	0.5	0
33	Binding of Proprotein Convertase Subtilisin/Kexin Type 9 to Epidermal Growth Factor-like Repeat A of Low Density Lipoprotein Receptor Decreases Receptor Recycling and Increases Degradation. Journal of Biological Chemistry, 2007, 282, 18602-18612.	3.4	660
34	Molecular biology of PCSK9: its role in LDL metabolism. Trends in Biochemical Sciences, 2007, 32, 71-77.	7.5	512
35	Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and inlivers of parabiotic mice. Journal of Clinical Investigation, 2006, 116, 2995-3005.	8.2	587
36	Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5374-5379.	7.1	637

JAY D HORTON

#	Article	IF	CITATIONS
37	Post-transcriptional Regulation of Low Density Lipoprotein Receptor Protein by Proprotein Convertase Subtilisin/Kexin Type 9a in Mouse Liver. Journal of Biological Chemistry, 2004, 279, 50630-50638.	3.4	442
38	Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology, 2004, 40, 1387-1395.	7.3	3,250
39	Molecular mediators of hepatic steatosis and liver injury. Journal of Clinical Investigation, 2004, 114, 147-152.	8.2	1,571
40	Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. Journal of Clinical Investigation, 2004, 113, 1168-1175.	8.2	218
41	Molecular mediators of hepatic steatosis and liver injury. Journal of Clinical Investigation, 2004, 114, 147-152.	8.2	944
42	Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12027-12032.	7.1	1,233
43	Overexpression of Sterol Regulatory Element-binding Protein-1a in Mouse Adipose Tissue Produces Adipocyte Hypertrophy, Increased Fatty Acid Secretion, and Fatty Liver. Journal of Biological Chemistry, 2003, 278, 36652-36660.	3.4	195
44	Diminished Hepatic Response to Fasting/Refeeding and Liver X Receptor Agonists in Mice with Selective Deficiency of Sterol Regulatory Element-binding Protein-1c. Journal of Biological Chemistry, 2002, 277, 9520-9528.	3.4	563
45	SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation, 2002, 109, 1125-1131.	8.2	3,528
46	SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation, 2002, 109, 1125-1131.	8.2	2,177
47	SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes and Development, 2001, 15, 1206-1216.	5.9	279
48	Increased Levels of Nuclear SREBP-1c Associated with Fatty Livers in Two Mouse Models of Diabetes Mellitus. Journal of Biological Chemistry, 1999, 274, 30028-30032.	3.4	616
49	Disruption of LDL receptor gene in transgenic SREBP-1a mice unmasks hyperlipidemia resulting from production of lipid-rich VLDL. Journal of Clinical Investigation, 1999, 103, 1067-1076.	8.2	174
50	Nuclear Sterol Regulatory Element-binding Proteins Activate Genes Responsible for the Entire Program of Unsaturated Fatty Acid Biosynthesis in Transgenic Mouse Liver. Journal of Biological Chemistry, 1998, 273, 35299-35306.	3.4	320