List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6116638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Vulnerability of LKB1-Deficient NSCLC to Disruption of ATP Pools and Redox Homeostasis by 8-Cl-Ado. Molecular Cancer Research, 2022, 20, 280-292.	1.5	4
2	Lung Cancer Computational Biology and Resources. Cold Spring Harbor Perspectives in Medicine, 2022, 12, a038273.	2.9	1
3	Lung Cancer and Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Identifying Important Knowledge Gaps for Investigation. Journal of Thoracic Oncology, 2022, 17, 214-227.	0.5	26
4	Establishment of reference standards for multifaceted mosaic variant analysis. Scientific Data, 2022, 9, 35.	2.4	1
5	Resistance to mutant KRAS-induced senescence in an hTERT/Cdk4-immortalized normal human bronchial epithelial cell line. Experimental Cell Research, 2022, 414, 113053.	1.2	1
6	AP-1 leads the way in lung cancer transformation. Developmental Cell, 2022, 57, 292-294.	3.1	4
7	Unbiased peptoid cell screen identifies a peptoid targeting newly appeared cell surface vimentin on tumor transformed early lung cancer cells. Bioorganic and Medicinal Chemistry, 2022, 58, 116673.	1.4	6
8	Lung Cancer Cell of Origin: Controversy and Clinical Translational Implications. Cancer Research, 2022, 82, 972-973.	0.4	0
9	AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 TAcells. Cell Reports Medicine, 2022, 3, 100554.	3.3	29
10	High-throughput functional evaluation of human cancer-associated mutations using base editors. Nature Biotechnology, 2022, 40, 874-884.	9.4	32
11	Snail acetylation by autophagyâ€derived acetylâ€coenzyme A promotes invasion and metastasis of <i>KRAS</i> â€ <i>LKB1</i> coâ€mutated lung cancer cells. Cancer Communications, 2022, 42, 716-749.	3.7	15
12	Altered Regulation of HIF-1α in Naive- and Drug-Resistant EGFR-Mutant NSCLC: Implications for a Vascular Endothelial Growth Factor-Dependent Phenotype. Journal of Thoracic Oncology, 2021, 16, 439-451.	0.5	34
13	A Call to Action: Dismantling Racial Injustices in Preclinical Research and Clinical Care of Black Patients Living with Small Cell Lung Cancer. Cancer Discovery, 2021, 11, 240-244.	7.7	10
14	Guanosine triphosphate links MYC-dependent metabolic and ribosome programs in small-cell lung cancer. Journal of Clinical Investigation, 2021, 131, .	3.9	33
15	Evasion of Innate Immunity Contributes to Small Cell Lung Cancer Progression and Metastasis. Cancer Research, 2021, 81, 1813-1826.	0.4	41
16	Abstract PO021: Lung cancer cells and cancer-associated fibroblasts drive macrophage polarization in a co-culture model. , 2021, , .		0
17	Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature, 2021, 590, 504-508.	13.7	79
18	Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Science Advances, 2021, 7, .	4.7	154

#	Article	IF	CITATIONS
19	Abstract S01-02: Assessing vulnerability of patients with lung cancer to SARS-CoV-2 infection based on serological antibody analyses. , 2021, , .		Ο
20	Single-Cell Expression Landscape of SARS-CoV-2 Receptor ACE2 and Host Proteases in Normal and Malignant Lung Tissues from Pulmonary Adenocarcinoma Patients. Cancers, 2021, 13, 1250.	1.7	7
21	Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell, 2021, 39, 346-360.e7.	7.7	422
22	Cell-autonomous immune gene expression is repressed in pulmonary neuroendocrine cells and small cell lung cancer. Communications Biology, 2021, 4, 314.	2.0	44
23	A rational targeted therapy for platinum-resistant small-cell lung cancer. Cancer Cell, 2021, 39, 453-456.	7.7	3
24	SH3BP4 promotes neuropilin-1 and α5-integrin endocytosis and is inhibited by Akt. Developmental Cell, 2021, 56, 1164-1181.e12.	3.1	7
25	Assessing consistency across functional screening datasets in cancer cells. Bioinformatics, 2021, 37, 4540-4547.	1.8	4
26	Narrative review: molecular and genetic profiling of oligometastatic non-small cell lung cancer. Translational Lung Cancer Research, 2021, 10, 3351-3368.	1.3	1
27	Lung Cancer Models Reveal Severe Acute Respiratory Syndrome Coronavirus 2–Induced Epithelial-to-Mesenchymal Transition Contributes to Coronavirus Disease 2019 Pathophysiology. Journal of Thoracic Oncology, 2021, 16, 1821-1839.	0.5	34
28	Lentiviral-Driven Discovery of Cancer Drug Resistance Mutations. Cancer Research, 2021, 81, 4685-4695.	0.4	6
29	Contemporary Lung Cancer Screening and the Promise of Blood-Based Biomarkers. Cancer Research, 2021, 81, 3441-3443.	0.4	1
30	Estrogen Promotes Resistance to Bevacizumab in Murine Models of NSCLC. Journal of Thoracic Oncology, 2021, 16, 2051-2064.	0.5	6
31	How lung cancer cells change identity. ELife, 2021, 10, .	2.8	3
32	Dual targeting of CTLA-4 and CD47 on T _{reg} cells promotes immunity against solid tumors. Science Translational Medicine, 2021, 13, .	5.8	39
33	ASCL1, NKX2-1, and PROX1 co-regulate subtype-specific genes in small-cell lung cancer. IScience, 2021, 24, 102953.	1.9	21
34	Co-immunoprecipitation and semi-quantitative immunoblotting for the analysis of protein-protein interactions. STAR Protocols, 2021, 2, 100644.	0.5	22
35	Structure-based classification of EGFR mutations informs inhibitor selection for lung cancer therapy. Cancer Cell, 2021, 39, 1455-1457.	7.7	2
36	Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathogens, 2021, 17, e1009743.	2.1	55

#	Article	IF	CITATIONS
37	602â€AXL targeting with bemcentinb restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through innate immune cell mediated expansion of TCF1+ CD8 T cells. , 2021, 9, A632-A632.		0
38	Comprehensive targeting of resistance to inhibition of RTK signaling pathways by using glucocorticoids. Nature Communications, 2021, 12, 7014.	5.8	6
39	The Colorectal Cancer Tumor Microenvironment and Its Impact on Liver and Lung Metastasis. Cancers, 2021, 13, 6206.	1.7	63
40	RUVBL1/RUVBL2 ATPase Activity Drives PAQosome Maturation, DNA Replication and Radioresistance in Lung Cancer. Cell Chemical Biology, 2020, 27, 105-121.e14.	2.5	38
41	From clinical specimens to human cancer preclinical models—a journey the NCIâ€cell line database—25 years later. Journal of Cellular Biochemistry, 2020, 121, 3986-3999.	1.2	6
42	A Proteomic Connectivity Map for Characterizing the Tumor Adaptive Response to Small Molecule Chemical Perturbagens. ACS Chemical Biology, 2020, 15, 140-150.	1.6	8
43	Defining the First Part of the Oncogenic KRAS Journey. Cell Stem Cell, 2020, 27, 499-500.	5.2	1
44	SCLC-CellMiner: A Resource for Small Cell Lung Cancer Cell Line Genomics and Pharmacology Based on Genomic Signatures. Cell Reports, 2020, 33, 108296.	2.9	86
45	The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer. Nature Metabolism, 2020, 2, 1401-1412.	5.1	82
46	Studying Lineage Plasticity One Cell at a Time. Cancer Cell, 2020, 38, 150-152.	7.7	6
47	Molecular differences across invasive lung adenocarcinoma morphological subgroups. Translational Lung Cancer Research, 2020, 9, 1029-1040.	1.3	3
48	Do mRNA profiles of lung adenocarcinomas provide information that will help individual patients?. EBioMedicine, 2020, 60, 103006.	2.7	0
49	An in vivo functional genomics screen of nuclear receptors and their co-regulators identifies FOXA1 as an essential gene in lung tumorigenesis. Neoplasia, 2020, 22, 294-310.	2.3	21
50	Immortalized normal human lung epithelial cell models for studying lung cancer biology. Respiratory Investigation, 2020, 58, 344-354.	0.9	15
51	<i>SLC43A3</i> Is a Biomarker of Sensitivity to the Telomeric DNA Damage Mediator 6-Thio-2′-Deoxyguanosine. Cancer Research, 2020, 80, 929-936.	0.4	10
52	New Approaches to SCLC Therapy: From the Laboratory to the Clinic. Journal of Thoracic Oncology, 2020, 15, 520-540.	0.5	119
53	Ubiquitin Câ€ŧerminal hydrolase‣1 has prognostic relevance and is a therapeutic target for highâ€grade neuroendocrine lung cancers. Cancer Science, 2020, 111, 610-620.	1.7	13
54	Computational Staining of Pathology Images to Study the Tumor Microenvironment in Lung Cancer. Cancer Research, 2020, 80, 2056-2066.	0.4	88

#	Article	IF	CITATIONS
55	AXL Targeting Abrogates Autophagic Flux and Induces Immunogenic Cell Death in Drug-Resistant Cancer Cells. Journal of Thoracic Oncology, 2020, 15, 973-999.	0.5	66
56	elF5B drives integrated stress response-dependent translation of PD-L1 in lung cancer. Nature Cancer, 2020, 1, 533-545.	5.7	73
57	EGFR inhibition triggers an adaptive response by co-opting antiviral signaling pathways in lung cancer. Nature Cancer, 2020, 1, 394-409.	5.7	51
58	Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 2020, 578, 621-626.	13.7	327
59	FRA1 contributes to MEK-ERK pathway-dependent PD-L1 upregulation by KRAS mutation in premalignant human bronchial epithelial cells. American Journal of Translational Research (discontinued), 2020, 12, 409-427.	0.0	7
60	KRT-232 and navitoclax enhance trametinib's anti-Cancer activity in non-small cell lung cancer patient-derived xenografts with KRAS mutations. American Journal of Cancer Research, 2020, 10, 4464-4475.	1.4	5
61	Elucidating Mechanisms of Acquired Resistance to IDH Inhibition By Saturation Variant Screening of Base-Edited Leukemia Cells. Blood, 2020, 136, 3-3.	0.6	0
62	p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas. Cell Reports, 2019, 28, 1860-1878.e9.	2.9	68
63	Subtype-specific secretomic characterization of pulmonary neuroendocrine tumor cells. Nature Communications, 2019, 10, 3201.	5.8	26
64	Systematic Analysis of Gene Expression in Lung Adenocarcinoma and Squamous Cell Carcinoma with a Case Study of FAM83A and FAM83B. Cancers, 2019, 11, 886.	1.7	13
65	ClickGene: an open cloud-based platform for big pan-cancer data genome-wide association study, visualization and exploration. BioData Mining, 2019, 12, 12.	2.2	13
66	AIF: an acquired metabolic liability in lung cancer. Cell Research, 2019, 29, 607-608.	5.7	0
67	Unbiased peptoid combinatorial cell screen identifies plectin protein as a potential biomarker for lung cancer stem cells. Scientific Reports, 2019, 9, 14954.	1.6	27
68	Artificial Intelligence in Lung Cancer Pathology Image Analysis. Cancers, 2019, 11, 1673.	1.7	152
69	Metabolic Diversity in Human Non-Small Cell Lung Cancer Cells. Molecular Cell, 2019, 76, 838-851.e5.	4.5	119
70	Development and Validation of a Pathology Image Analysis-based Predictive Model for Lung Adenocarcinoma Prognosis - A Multi-cohort Study. Scientific Reports, 2019, 9, 6886.	1.6	8
71	LKB1 and KEAP1/NRF2 Pathways Cooperatively Promote Metabolic Reprogramming with Enhanced Glutamine Dependence in <i>KRAS</i> -Mutant Lung Adenocarcinoma. Cancer Research, 2019, 79, 3251-3267.	0.4	196
72	Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nature Reviews Cancer, 2019, 19, 289-297.	12.8	692

JOHN **D M**INNA

#	Article	IF	CITATIONS
73	Checkpoint Inhibitor Pneumonitis: Too Clinically Serious For Benefit?. Journal of Thoracic Oncology, 2019, 14, 332-335.	0.5	7
74	Small cell lung cancers made from scratch. Journal of Experimental Medicine, 2019, 216, 476-478.	4.2	6
75	ConvPath: A software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network. EBioMedicine, 2019, 50, 103-110.	2.7	66
76	LCE: an open web portal to explore gene expression and clinical associations in lung cancer. Oncogene, 2019, 38, 2551-2564.	2.6	78
77	Inhibition of Thioredoxin/Thioredoxin Reductase Induces Synthetic Lethality in Lung Cancers with Compromised Glutathione Homeostasis. Cancer Research, 2019, 79, 125-132.	0.4	56
78	Elucidating synergistic dependencies in lung adenocarcinoma by proteome-wide signaling-network analysis. PLoS ONE, 2019, 14, e0208646.	1.1	6
79	Validation of the 12-gene Predictive Signature for Adjuvant Chemotherapy Response in Lung Cancer. Clinical Cancer Research, 2019, 25, 150-157.	3.2	13
80	Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer. Cell, 2018, 173, 864-878.e29.	13.5	102
81	Evaluating tumor-suppressor gene combinations. Nature Genetics, 2018, 50, 480-482.	9.4	2
82	The Epithelial Sodium Channel (αENaC) Is a Downstream Therapeutic Target of ASCL1 in Pulmonary Neuroendocrine Tumors. Translational Oncology, 2018, 11, 292-299.	1.7	14
83	Silencing the Snail-Dependent RNA Splice Regulator ESRP1 Drives Malignant Transformation of Human Pulmonary Epithelial Cells. Cancer Research, 2018, 78, 1986-1999.	0.4	13
84	The Impact of Smoking and TP53 Mutations in Lung Adenocarcinoma Patients with Targetable Mutations—The Lung Cancer Mutation Consortium (LCMC2). Clinical Cancer Research, 2018, 24, 1038-1047.	3.2	154
85	Small cell lung cancer tumors and preclinical models display heterogeneity of neuroendocrine phenotypes. Translational Lung Cancer Research, 2018, 7, 32-49.	1.3	173
86	A quantitative method for assessing smoke associated molecular damage in lung cancers. Translational Lung Cancer Research, 2018, 7, 439-449.	1.3	13
87	Transmembrane Protease TMPRSS11B Promotes Lung Cancer Growth by Enhancing Lactate Export and Glycolytic Metabolism. Cell Reports, 2018, 25, 2223-2233.e6.	2.9	34
88	LMO1 functions as an oncogene by regulating TTK expression and correlates with neuroendocrine differentiation of lung cancer. Oncotarget, 2018, 9, 29601-29618.	0.8	19
89	Different Originating Cells Underlie Intertumoral Heterogeneity in Lung Neuroendocrine Tumors. Cancer Discovery, 2018, 8, 1216-1218.	7.7	2
90	Estrogen Receptor Beta-Mediated Modulation of Lung Cancer Cell Proliferation by 27-Hydroxycholesterol. Frontiers in Endocrinology, 2018, 9, 470.	1.5	27

JOHN D ΜΙΝΝΑ

#	Article	IF	CITATIONS
91	HORMAD1 Is a Negative Prognostic Indicator in Lung Adenocarcinoma and Specifies Resistance to Oxidative and Genotoxic Stress. Cancer Research, 2018, 78, 6196-6208.	0.4	50
92	<i><scp>elF</scp>2</i> l², a subunit of translationâ€initiation factor <scp>ElF</scp> 2, is a potential therapeutic target for nonâ€small cell lung cancer. Cancer Science, 2018, 109, 1843-1852.	1.7	20
93	Diagnosis and management of pulmonary toxicity associated with cancer immunotherapy. Lancet Respiratory Medicine,the, 2018, 6, 472-478.	5.2	64
94	Identifying a missing lineage driver in a subset of lung neuroendocrine tumors. Genes and Development, 2018, 32, 865-867.	2.7	13
95	Inosine Monophosphate Dehydrogenase Dependence in a Subset of Small Cell Lung Cancers. Cell Metabolism, 2018, 28, 369-382.e5.	7.2	136
96	Telomerase-Mediated Strategy for Overcoming Non–Small Cell Lung Cancer Targeted Therapy and Chemotherapy Resistance. Neoplasia, 2018, 20, 826-837.	2.3	40
97	Kub5-Hera <i>RPRD1B</i> Deficiency Promotes "BRCAness―and Vulnerability to PARP Inhibition in BRCA-proficient Breast Cancers. Clinical Cancer Research, 2018, 24, 6459-6470.	3.2	11
98	TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer. Journal of Clinical Investigation, 2018, 128, 2500-2518.	3.9	73
99	SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nature Communications, 2017, 8, 14098.	5.8	80
100	CHK1 Inhibition in Small-Cell Lung Cancer Produces Single-Agent Activity in Biomarker-Defined Disease Subsets and Combination Activity with Cisplatin or Olaparib. Cancer Research, 2017, 77, 3870-3884.	0.4	163
101	Proportion of Never-Smoker Non–Small Cell Lung Cancer Patients at Three Diverse Institutions. Journal of the National Cancer Institute, 2017, 109, djw295.	3.0	97
102	Taxane-Platin-Resistant Lung Cancers Co-develop Hypersensitivity to JumonjiC Demethylase Inhibitors. Cell Reports, 2017, 19, 1669-1684.	2.9	82
103	CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature, 2017, 546, 168-172.	13.7	222
104	The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nature Communications, 2017, 8, 15503.	5.8	116
105	Identification of proteasomal catalytic subunit <i><scp>PSMA</scp>6</i> as a therapeutic target for lung cancer. Cancer Science, 2017, 108, 732-743.	1.7	18
106	Combination Therapy Targeting BCL6 and Phospho-STAT3 Defeats Intratumor Heterogeneity in a Subset of Non–Small Cell Lung Cancers. Cancer Research, 2017, 77, 3070-3081.	0.4	36
107	Small-cell lung cancer: what we know, what we need to know and the path forward. Nature Reviews Cancer, 2017, 17, 725-737.	12.8	558
108	Identification of a Human Airway Epithelial Cell Subpopulation with Altered Biophysical, Molecular, and Metastatic Properties. Cancer Prevention Research, 2017, 10, 514-524.	0.7	9

#	Article	IF	CITATIONS
109	Quantitative Proteomic Analysis of Optimal Cutting Temperature (OCT) Embedded Core-Needle Biopsy of Lung Cancer. Journal of the American Society for Mass Spectrometry, 2017, 28, 2078-2089.	1.2	15
110	PROTOCADHERIN 7 Acts through SET and PP2A to Potentiate MAPK Signaling by EGFR and KRAS during Lung Tumorigenesis. Cancer Research, 2017, 77, 187-197.	0.4	55
111	Non-malignant respiratory epithelial cells preferentially proliferate from resected non-small cell lung cancer specimens cultured under conditionally reprogrammed conditions. Oncotarget, 2017, 8, 11114-11126.	0.8	22
112	Exosome mediated phenotypic changes in lung cancer pathophysiology. Translational Cancer Research, 2017, 6, S1040-S1042.	0.4	7
113	MiRNA-Related Genetic Variations Associated with Radiotherapy-Induced Toxicities in Patients with Locally Advanced Non–Small Cell Lung Cancer. PLoS ONE, 2016, 11, e0150467.	1.1	7
114	Leveraging an NQO1 Bioactivatable Drug for Tumor-Selective Use of Poly(ADP-ribose) Polymerase Inhibitors. Cancer Cell, 2016, 30, 940-952.	7.7	104
115	Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer. Bioinformatics, 2016, 32, 1373-1379.	1.8	11
116	XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer. Nature, 2016, 538, 114-117.	13.7	162
117	ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Reports, 2016, 16, 1259-1272.	2.9	340
118	Fatty Acid Oxidation Mediated by Acyl-CoA Synthetase Long Chain 3 Is Required for Mutant KRAS Lung Tumorigenesis. Cell Reports, 2016, 16, 1614-1628.	2.9	205
119	Developing EZH2-Targeted Therapy for Lung Cancer. Cancer Discovery, 2016, 6, 949-952.	7.7	26
120	Opening a Chromatin Gate to Metastasis. Cell, 2016, 166, 275-276.	13.5	3
121	Selecting Reliable mRNA Expression Measurements across Platforms Improves Downstream Analysis. Cancer Informatics, 2016, 15, CIN.S38590.	0.9	2
122	Developing New, Rational Therapies for Recalcitrant Small Cell Lung Cancer. Journal of the National Cancer Institute, 2016, 108, djw119.	3.0	11
123	Torin2 Suppresses Ionizing Radiation-Induced DNA Damage Repair. Radiation Research, 2016, 185, 527-538.	0.7	11
124	Monitoring drug induced apoptosis and treatment sensitivity in non-small cell lung carcinoma using dielectrophoresis. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1877-1883.	1.1	28
125	An Expression Signature as an Aid to the Histologic Classification of Non–Small Cell Lung Cancer. Clinical Cancer Research, 2016, 22, 4880-4889.	3.2	140
126	Quantitative Secretomic Analysis Identifies Extracellular Protein Factors That Modulate the Metastatic Phenotype of Non-Small Cell Lung Cancer. Journal of Proteome Research, 2016, 15, 477-486.	1.8	45

#	Article	IF	CITATIONS
127	Small Cell Lung Cancer: Can Recent Advances in Biology and Molecular Biology Be Translated into Improved Outcomes?. Journal of Thoracic Oncology, 2016, 11, 453-474.	O.5	156
128	From Mice to Men and Back: An Assessment of Preclinical Model Systems for the Study of Lung Cancers. Journal of Thoracic Oncology, 2016, 11, 287-299.	0.5	45
129	Cancer-Specific Production of N-Acetylaspartate via NAT8L Overexpression in Non–Small Cell Lung Cancer and Its Potential as a Circulating Biomarker. Cancer Prevention Research, 2016, 9, 43-52.	0.7	33
130	ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. Journal of Clinical Investigation, 2016, 126, 3219-3235.	3.9	256
131	Identification of Gene Expression Differences between Lymphangiogenic and Non-Lymphangiogenic Non-Small Cell Lung Cancer Cell Lines. PLoS ONE, 2016, 11, e0150963.	1.1	12
132	Auranofin-mediated inhibition of PI3K/AKT/mTOR axis and anticancer activity in non-small cell lung cancer cells. Oncotarget, 2016, 7, 3548-3558.	0.8	114
133	Identification of lipid-phosphatidylserine (PS) as the target of unbiasedly selected cancer specific peptide-peptoid hybrid PPS1. Oncotarget, 2016, 7, 30678-30690.	0.8	36
134	Telomerase inhibitor imetelstat has preclinical activity across the spectrum of non-small cell lung cancer oncogenotypes in a telomere length dependent manner. Oncotarget, 2016, 7, 31639-31651.	0.8	38
135	On comparing heterogeneity across biomarkers. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 558-567.	1.1	12
136	Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis. PLoS ONE, 2015, 10, e0134842.	1.1	12
137	Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET. Mutagenesis, 2015, 30, 685-694.	1.0	11
138	Molecular Basis of Lung Cancer. , 2015, , 475-490.e1.		1
139	Genetic Mutation of p53 and Suppression of the miR-17â^¼92 Cluster Are Synthetic Lethal in Non–Small Cell Lung Cancer due to Upregulation of Vitamin D Signaling. Cancer Research, 2015, 75, 666-675.	0.4	39
140	Systematic siRNA Screen Unmasks NSCLC Growth Dependence by Palmitoyltransferase DHHC5. Molecular Cancer Research, 2015, 13, 784-794.	1.5	35
141	Co-occurring Genomic Alterations Define Major Subsets of <i>KRAS</i> -Mutant Lung Adenocarcinoma with Distinct Biology, Immune Profiles, and Therapeutic Vulnerabilities. Cancer Discovery, 2015, 5, 860-877.	7.7	696
142	Small Cell Lung Cancer: Will Recent Progress Lead to Improved Outcomes?. Clinical Cancer Research, 2015, 21, 2244-2255.	3.2	179
143	An Integrated Molecular Analysis of Lung Adenocarcinomas Identifies Potential Therapeutic Targets among TTF1-Negative Tumors, Including DNA Repair Proteins and Nrf2. Clinical Cancer Research, 2015, 21, 3480-3491.	3.2	48
144	Unbiased Selection of Peptide–Peptoid Hybrids Specific for Lung Cancer Compared to Normal Lung Epithelial Cells. ACS Chemical Biology, 2015, 10, 2891-2899.	1.6	28

#	Article	IF	CITATIONS
145	A Systematic Analysis Reveals Heterogeneous Changes in the Endocytic Activities of Cancer Cells. Cancer Research, 2015, 75, 4640-4650.	0.4	43
146	Abstract A22: Differential MYC dependence in NSCLC identified through pharmacological and genetic MYC inhibition. , 2015, , .		0
147	NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas. Molecular Biology of the Cell, 2014, 25, 1782-1792.	0.9	13
148	Radiation-Enhanced Lung Cancer Progression in a Transgenic Mouse Model of Lung Cancer Is Predictive of Outcomes in Human Lung and Breast Cancer. Clinical Cancer Research, 2014, 20, 1610-1622.	3.2	28
149	Ras transformation uncouples the kinesin-coordinated cellular nutrient response. Proceedings of the United States of America, 2014, 111, 10568-10573.	3.3	11
150	Comparison between concurrent and sequential chemoradiation for non-small cell lung cancer in vitro. Oncology Letters, 2014, 7, 307-310.	0.8	5
151	Adaptive Prediction Model in Prospective Molecular Signature–Based Clinical Studies. Clinical Cancer Research, 2014, 20, 531-539.	3.2	15
152	Using Multiplexed Assays of Oncogenic Drivers in Lung Cancers to Select Targeted Drugs. JAMA - Journal of the American Medical Association, 2014, 311, 1998.	3.8	1,386
153	Essential Role of Aldehyde Dehydrogenase 1A3 for the Maintenance of Non–Small Cell Lung Cancer Stem Cells Is Associated with the STAT3 Pathway. Clinical Cancer Research, 2014, 20, 4154-4166.	3.2	131
154	ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14788-14793.	3.3	205
155	Selective Antitumor Activity of Ibrutinib in EGFR-Mutant Non–Small Cell Lung Cancer Cells. Journal of the National Cancer Institute, 2014, 106, .	3.0	88
156	Aberrant large tumor suppressor 2 (LATS2) gene expression correlates with EGFR mutation and survival in lung adenocarcinomas. Lung Cancer, 2014, 85, 282-292.	0.9	25
157	A Search for Novel Cancer/Testis Antigens in Lung Cancer Identifies VCX/Y Genes, Expanding the Repertoire of Potential Immunotherapeutic Targets. Cancer Research, 2014, 74, 4694-4705.	0.4	40
158	A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nature Communications, 2014, 5, 3887.	5.8	456
159	Branching morphogenesis of immortalized human bronchial epithelial cells in three-dimensional culture. Differentiation, 2014, 87, 119-126.	1.0	30
160	Aiolos Promotes Anchorage Independence by Silencing p66Shc Transcription in Cancer Cells. Cancer Cell, 2014, 25, 575-589.	7.7	64
161	Identification and Characterization of a Suite of Tumor Targeting Peptides for Non-Small Cell Lung Cancer. Scientific Reports, 2014, 4, 4480.	1.6	44
162	An innovative role of thyroid receptor β in tripleâ€negative breast cancer (58.4). FASEB Journal, 2014, 28, 58.4.	0.2	0

#	Article	IF	CITATIONS
163	Systematic Identification of Molecular Subtype-Selective Vulnerabilities in Non-Small-Cell Lung Cancer. Cell, 2013, 155, 552-566.	13.5	151
164	<i><scp>TIMELESS</scp></i> is overexpressed in lung cancer and its expression correlates with poor patient survival. Cancer Science, 2013, 104, 171-177.	1.7	57
165	An Epithelial–Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance. Clinical Cancer Research, 2013, 19, 279-290.	3.2	848
166	Human Lung Epithelial Cells Progressed to Malignancy through Specific Oncogenic Manipulations. Molecular Cancer Research, 2013, 11, 638-650.	1.5	192
167	A 12-Gene Set Predicts Survival Benefits from Adjuvant Chemotherapy in Non–Small Cell Lung Cancer Patients. Clinical Cancer Research, 2013, 19, 1577-1586.	3.2	226
168	IGFBP2/FAK Pathway Is Causally Associated with Dasatinib Resistance in Non–Small Cell Lung Cancer Cells. Molecular Cancer Therapeutics, 2013, 12, 2864-2873.	1.9	49
169	NeuroD1 regulates survival and migration of neuroendocrine lung carcinomas via signaling molecules TrkB and NCAM. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6524-6529.	3.3	84
170	Molecular biology of lung cancer. Journal of Thoracic Disease, 2013, 5 Suppl 5, S479-90.	0.6	173
171	Effect of KRAS Oncogene Substitutions on Protein Behavior: Implications for Signaling and Clinical Outcome. Journal of the National Cancer Institute, 2012, 104, 228-239.	3.0	424
172	Proteomic Profiling Identifies Dysregulated Pathways in Small Cell Lung Cancer and Novel Therapeutic Targets Including PARP1. Cancer Discovery, 2012, 2, 798-811.	7.7	432
173	Latent feature decompositions for integrative analysis of diverse high-throughput genomic data. , 2012, , .		3
174	Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature Genetics, 2012, 44, 1111-1116.	9.4	906
175	Use of proteomic analysis of LKB1/AMPK/mTOR pathways to identify IGF-1R pathway upregulation with LKB1 loss or mTOR inhibition in NSCLC: Implications for targeted combinations Journal of Clinical Oncology, 2012, 30, 10612-10612.	0.8	3
176	ALK and MET genes in advanced lung adenocarcinomas: The Lung Cancer Mutation Consortium experience Journal of Clinical Oncology, 2012, 30, 7589-7589.	0.8	7
177	Investigation of PARP1 as a therapeutic target in small cell lung cancer Journal of Clinical Oncology, 2012, 30, 7096-7096.	0.8	1
178	Effects of entinostat onresistance to cetuximab and EGFR TKIs in non-small cell lung cancer Journal of Clinical Oncology, 2012, 30, e18077-e18077.	0.8	2
179	Molecular Biology of Lung Cancer: Clinical Implications. Clinics in Chest Medicine, 2011, 32, 703-740.	0.8	194
180	Multipotent Capacity of Immortalized Human Bronchial Epithelial Cells. PLoS ONE, 2011, 6, e22023.	1.1	60

#	Article	IF	CITATIONS
181	Pivotal role of epithelial cell adhesion molecule in the survival of lung cancer cells. Cancer Science, 2011, 102, 1493-1500.	1.7	24
182	Knockdown of Oncogenic KRAS in Non–Small Cell Lung Cancers Suppresses Tumor Growth and Sensitizes Tumor Cells to Targeted Therapy. Molecular Cancer Therapeutics, 2011, 10, 336-346.	1.9	151
183	Proteomic Profiling Identifies Pathways Dysregulated in Non-small Cell Lung Cancer and an Inverse Association of AMPK and Adhesion Pathways with Recurrence. Journal of Thoracic Oncology, 2010, 5, 1894-1904.	0.5	57
184	Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer and Metastasis Reviews, 2010, 29, 61-72.	2.7	154
185	A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature, 2010, 463, 184-190.	13.7	972
186	Aldehyde Dehydrogenase Activity Selects for Lung Adenocarcinoma Stem Cells Dependent on Notch Signaling. Cancer Research, 2010, 70, 9937-9948.	0.4	357
187	A Susceptibility Locus on Chromosome 6q Greatly Increases Lung Cancer Risk among Light and Never Smokers. Cancer Research, 2010, 70, 2359-2367.	0.4	52
188	Nrf2 and Keap1 Abnormalities in Non–Small Cell Lung Carcinoma and Association with Clinicopathologic Features. Clinical Cancer Research, 2010, 16, 3743-3753.	3.2	380
189	Nuclear Receptor Expression Defines a Set of Prognostic Biomarkers for Lung Cancer. PLoS Medicine, 2010, 7, e1000378.	3.9	65
190	Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research. Journal of the National Cancer Institute, 2010, 102, 1310-1321.	3.0	182
191	Lung cancer cell lines: Useless artifacts or invaluable tools for medical science?. Lung Cancer, 2010, 68, 309-318.	0.9	109
192	Tumor Oncogenotypes and Lung Cancer Stem Cell Identity. Cell Stem Cell, 2010, 7, 2-4.	5.2	22
193	Sex Determining Region Y-Box 2 (SOX2) Is a Potential Cell-Lineage Gene Highly Expressed in the Pathogenesis of Squamous Cell Carcinomas of the Lung. PLoS ONE, 2010, 5, e9112.	1.1	117
194	Fine Mapping of Chromosome 6q23-25 Region in Familial Lung Cancer Families Reveals <i>RGS17</i> as a Likely Candidate Gene. Clinical Cancer Research, 2009, 15, 2666-2674.	3.2	80
195	Alterations in Genes of the EGFR Signaling Pathway and Their Relationship to EGFR Tyrosine Kinase Inhibitor Sensitivity in Lung Cancer Cell Lines. PLoS ONE, 2009, 4, e4576.	1.1	177
196	Haplotype and Cell Proliferation Analyses of Candidate Lung Cancer Susceptibility Genes on Chromosome 15q24-25.1. Cancer Research, 2009, 69, 7844-7850.	0.4	49
197	miR-93, miR-98, and miR-197 Regulate Expression of Tumor Suppressor Gene <i>FUS1</i> . Molecular Cancer Research, 2009, 7, 1234-1243.	1.5	209
198	SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genetics, 2009, 41, 1238-1242.	9.4	862

#	Article	IF	CITATIONS
199	Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery. PLoS ONE, 2009, 4, e6146.	1.1	622
200	Immortalization of human small airway epithelial cells with characteristics of bronchioalveolar stem cells. FASEB Journal, 2009, 23, LB340.	0.2	1
201	Predicting the future for people with lung cancer. Nature Medicine, 2008, 14, 812-813.	15.2	29
202	<i>Pten</i> Inactivation Accelerates Oncogenic <i>K-ras</i> –Initiated Tumorigenesis in a Mouse Model of Lung Cancer. Cancer Research, 2008, 68, 1119-1127.	0.4	111
203	Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14112-14117.	3.3	113
204	Loss and Reduction of Fus1 Protein Expression is a Frequent Phenomenon in the Pathogenesis of Lung Cancer. Clinical Cancer Research, 2008, 14, 41-47.	3.2	74
205	Semaphorin 3B Inhibits the Phosphatidylinositol 3-Kinase/Akt Pathway through Neuropilin-1 in Lung and Breast Cancer Cells. Cancer Research, 2008, 68, 8295-8303.	0.4	71
206	<i>PIK3CA</i> Mutations and Copy Number Gains in Human Lung Cancers. Cancer Research, 2008, 68, 6913-6921.	0.4	399
207	Synergistic Tumor Suppression by Coexpression of FUS1 and p53 Is Associated with Down-regulation of Murine Double Minute-2 and Activation of the Apoptotic Protease-Activating Factor 1–Dependent Apoptotic Pathway in Human Non–Small Cell Lung Cancer Cells. Cancer Research, 2007, 67, 709-717.	0.4	54
208	Polymorphisms, Mutations, and Amplification of the EGFR Gene in Non-Small Cell Lung Cancers. PLoS Medicine, 2007, 4, e125.	3.9	130
209	Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature, 2007, 446, 815-819.	13.7	438
210	Characterizing the cancer genome in lung adenocarcinoma. Nature, 2007, 450, 893-898.	13.7	1,020
211	New molecularly targeted therapies for lung cancer. Journal of Clinical Investigation, 2007, 117, 2740-2750.	3.9	180
212	A Literature Review of Molecular Markers Predictive of Clinical Response to Cytotoxic Chemotherapy in Patients with Lung Cancer. Journal of Thoracic Oncology, 2006, 1, 31-37.	0.5	16
213	A Literature Review of Molecular Markers Predictive of Clinical Response to Cytotoxic Chemotherapy in Patients with Lung Cancer. Journal of Thoracic Oncology, 2006, 1, 31-37.	0.5	16
214	A three-dimensional model of differentiation of immortalized human bronchial epithelial cells. Differentiation, 2006, 74, 141-148.	1.0	89
215	Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer. Cancer, 2006, 106, 2200-2207.	2.0	132
216	High resolution analysis of non-small cell lung cancer cell lines by whole genome tiling path array CGH. International Journal of Cancer, 2006, 118, 1556-1564.	2.3	117

#	Article	IF	CITATIONS
217	EGFR mutations and molecularly targeted therapy: a new era in the treatment of lung cancer. Nature Clinical Practice Oncology, 2006, 3, 170-171.	4.3	16
218	A Genome-Wide Screen for Promoter Methylation in Lung Cancer Identifies Novel Methylation Markers for Multiple Malignancies. PLoS Medicine, 2006, 3, e486.	3.9	228
219	Multiple Oncogenic Changes (K-RASV12, p53 Knockdown, Mutant EGFRs, p16 Bypass, Telomerase) Are Not Sufficient to Confer a Full Malignant Phenotype on Human Bronchial Epithelial Cells. Cancer Research, 2006, 66, 2116-2128.	0.4	247
220	Identification of chromosome arm 9p as the most frequent target of homozygous deletions in lung cancer. Genes Chromosomes and Cancer, 2005, 44, 405-414.	1.5	81
221	Homozygous Deletions and Chromosome Amplifications in Human Lung Carcinomas Revealed by Single Nucleotide Polymorphism Array Analysis. Cancer Research, 2005, 65, 5561-5570.	0.4	309
222	Clinical and Biological Features Associated With Epidermal Growth Factor Receptor Gene Mutations in Lung Cancers. Journal of the National Cancer Institute, 2005, 97, 339-346.	3.0	2,194
223	Clinicopathologic Significance of the Mutations of the Epidermal Growth Factor Receptor Gene in Patients with Non–Small Cell Lung Cancer. Clinical Cancer Research, 2005, 11, 6816-6822.	3.2	135
224	Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Research, 2005, 65, 226-35.	0.4	283
225	CANCER: A Bull's Eye for Targeted Lung Cancer Therapy. Science, 2004, 304, 1458-1461.	6.0	84
226	Different Roles for Caveolin-1 in the Development of Non-Small Cell Lung Cancer versus Small Cell Lung Cancer. Cancer Research, 2004, 64, 4277-4285.	0.4	168
227	Immortalization of Human Bronchial Epithelial Cells in the Absence of Viral Oncoproteins. Cancer Research, 2004, 64, 9027-9034.	0.4	573
228	Mutations and addiction to EGFR: the Achilles â€~heal' of lung cancers?. Trends in Molecular Medicine, 2004, 10, 481-486.	3.5	273
229	A big step in the study of small cell lung cancer. Cancer Cell, 2003, 4, 163-166.	7.7	50
230	Loss of heterozygosity of chromosome 12p does not correlate withKRAS mutation in non-small cell lung cancer. International Journal of Cancer, 2003, 107, 962-969.	2.3	31
231	Molecular Genetics of Lung Cancer. Annual Review of Medicine, 2003, 54, 73-87.	5.0	289
232	Nicotine exposure and bronchial epithelial cell nicotinic acetylcholine receptor expression in the pathogenesis of lung cancer. Journal of Clinical Investigation, 2003, 111, 31-33.	3.9	81
233	Aberrant DNA Methylation in Lung Cancer: Biological and Clinical Implications. Oncologist, 2002, 7, 451-457.	1.9	136
234	Molecular Pathogenesis of Lung Cancer. Annual Review of Physiology, 2002, 64, 681-708.	5.6	169

#	Article	IF	CITATIONS
235	Focus on lung cancer. Cancer Cell, 2002, 1, 49-52.	7.7	456
236	Clinicopathological significance of epigenetic inactivation of RASSF1A at 3p21.3 in stage I lung adenocarcinoma. Clinical Cancer Research, 2002, 8, 2362-8.	3.2	95
237	Molecular genetic abnormalities in the pathogenesis of human lung cancer. Pathology and Oncology Research, 2001, 7, 6-13.	0.9	65
238	Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene, 2001, 20, 1509-1518.	2.6	341
239	Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers. Oncogene, 2001, 20, 1005-1009.	2.6	17
240	Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to G1 arrest and growth inhibition of lung cancer cells. Oncogene, 2001, 20, 6258-6262.	2.6	82
241	Epigenetic Inactivation of RASSF1A in Lung and Breast Cancers and Malignant Phenotype Suppression. Journal of the National Cancer Institute, 2001, 93, 691-699.	3.0	695
242	Molecular genetics of small cell lung carcinoma. Seminars in Oncology, 2001, 28, 3-13.	0.8	63
243	Two regions of homozygous deletion clusters at chromosome band 9p21 in human lung cancer. Genes Chromosomes and Cancer, 2000, 27, 308-318.	1.5	29
244	Two identical triplet sisters carrying a germlineBRCA1 gene mutation acquire very similar breast cancer somatic mutations at multiple other sites throughout the genome. Genes Chromosomes and Cancer, 2000, 28, 359-369.	1.5	22
245	Functional Properties of a New Voltage-dependent Calcium Channel α2δAuxiliary Subunit Gene (CACNA2D2). Journal of Biological Chemistry, 2000, 275, 12237-12242.	1.6	165
246	Chromosome 19 Translocation, Overexpression of Notch3, and Human Lung Cancer. Journal of the National Cancer Institute, 2000, 92, 1355-1357.	3.0	240
247	Promoter Methylation and Silencing of the Retinoic Acid Receptor-Â Gene in Lung Carcinomas. Journal of the National Cancer Institute, 2000, 92, 1303-1307.	3.0	334
248	Enrichment of epithelial cells for molecular studies. Nature Medicine, 1999, 5, 459-462.	15.2	67
249	Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene, 1999, 18, 643-650.	2.6	315
250	Molecular pathogenesis of lung cancer. Journal of Thoracic and Cardiovascular Surgery, 1999, 118, 1136-1152.	0.4	119
251	Refined mapping of two regions of loss of heterozygosity on chromosome band 11q23 in lung cancer. , 1999, 25, 154-159.		27
252	Cloning of a breast cancer homozygous deletion junction narrows the region of search for a 3p21.3 tumor suppressor gene. Oncogene, 1998, 16, 3151-3157.	2.6	136

#	Article	IF	CITATIONS
253	BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene, 1998, 16, 1097-1112.	2.6	636
254	Mutation analysis of the PTEN/MMAC1 gene in lung cancer. Oncogene, 1998, 17, 1557-1565.	2.6	181
255	Homozygous deletions at 3p12 in breast and lung cancer. Oncogene, 1998, 17, 1723-1729.	2.6	95
256	Progress in understanding the molecular pathogenesis of human lung cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 1998, 1378, F21-F59.	3.3	147
257	Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer. International Journal of Cancer, 1998, 78, 766-774.	2.3	270
258	Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. , 1998, 21, 308-319.		158
259	TheDUTT1Gene, a Novel NCAM Family Member Is Expressed in Developing Murine Neural Tissues and Has an Unusually Broad Pattern of Expression. Molecular and Cellular Neurosciences, 1998, 11, 29-35.	1.0	68
260	Mutation analysis of the coding sequences of MEK-1 and MEK-2 genes in human lung cancer cell lines. Oncogene, 1997, 14, 1231-1234.	2.6	24
261	The human homolog of the rodent immediate early response genes, PC4 and TIS7, resides in the lung cancer tumor suppressor gene region on chromosome 3p21. Human Genetics, 1997, 99, 334-341.	1.8	24
262	Precise localization of theFHIT gene to the common fragile site at 3p14.2 (FRA3B) and characterization of homozygous deletions within FRA3B that affectFHIT transcription in tumor cell lines. , 1997, 20, 16-23.		24
263	NCI series of cell lines: An historical perspective. Journal of Cellular Biochemistry, 1996, 63, 1-11.	1.2	45
264	NCI-navy medical oncology branch cell line data base. Journal of Cellular Biochemistry, 1996, 63, 32-91.	1.2	244
265	Correlation of in vitro drug sensitivity testing results with response to chemotherapy and survival: Comparison of non-small cell lung cancer and small cell lung cancer. Journal of Cellular Biochemistry, 1996, 63, 173-185.	1.2	30
266	Karyotypic Derivation of H9 Cell Line. Journal of the National Cancer Institute, 1993, 85, 1168-1168.	3.0	4
267	Expression of c- <i>myc</i> in Progenitor Cells of the Bronchopulmonary Epithelium and in a Large Number of Non-Small Cell Lung Cancers. American Journal of Respiratory Cell and Molecular Biology, 1993, 9, 33-43.	1.4	58
268	Transcription factors and recessive oncogenes in the pathogenesis of human lung cancer. International Journal of Cancer, 1989, 44, 32-34.	2.3	13
269	Differential expression of myc family genes during murine development. Nature, 1986, 319, 780-783.	13.7	520
270	Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature, 1985, 316, 823-826.	13.7	1,337

#	Article	IF	CITATIONS
271	L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature, 1985, 318, 69-73.	13.7	607
272	The hematopoietic toxicity of regional radiation therapy. Correlations for combined modality therapy with systemic chemotherapy. Cancer, 1985, 55, 1429-1435.	2.0	14
273	The role of radiation therapy in the treatment of small cell lung cancer. Cancer, 1985, 55, 2163-2175.	2.0	50
274	Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature, 1983, 306, 194-196.	13.7	863
275	High-dose methotrexate with leucovorin rescue in patients with unresectable non-small cell carcinoma of the lung. Cancer, 1983, 52, 1778-1782.	2.0	4
276	Abdominal computed tomography in small cell lung cancer: Assessment of extent of disease and response to therapy. Cancer, 1982, 49, 1485-1490.	2.0	15
277	Clinical implications of cytogenetic studies in cutaneous t-cell lymphoma (CTCL). Cancer, 1982, 50, 1539-1553.	2.0	100
278	The clinical behavior of "mixed―small cell/large cell bronchogenic carcinoma compared to "pure― small cell subtypes. Cancer, 1982, 50, 2894-2902.	2.0	169
279	Effective treatment of hormonally-unresponsive metastatic carcinoma of the prostate with adriamycin and cyclophosphamide methods of documenting tumor response and progression. Cancer, 1980, 45, 1300-1310.	2.0	40
280	Evaluation of response to chemotherapy with fiberoptic bronchoscopy in non-small cell lung cancer. Cancer, 1980, 45, 1693-1696.	2.0	7
281	CNS metastases in small cell bronchogenic carcinoma.Increasing frequency and changing pattern with lengthening survival. Cancer, 1979, 44, 1885-1893.	2.0	461
282	Expression of feline xenotropic RNA tumor virus in hybrids between permissive human and non-permissive mouse cells. International Journal of Cancer, 1979, 24, 826-834.	2.3	8
283	The skin in disseminated intravascular coagulation British Journal of Dermatology, 1973, 88, 221-229.	1.4	77
284	Longitudinal COVID-19 Vaccination–Induced Antibody Responses and Omicron Neutralization in Patients With Lung Cancer. Journal of Clinical Oncology, 0, , .	0.8	2