
Susan P Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/611662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 2010, 13, 1310-1324.	6.4	1,387
2	Disentangling the Drivers of β Diversity Along Latitudinal and Elevational Gradients. Science, 2011, 333, 1755-1758.	12.6	617
3	What Are Species Pools and When Are They Important?. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 45-67.	8.3	252
4	REGIONAL AND LOCAL SPECIES RICHNESS IN AN INSULAR ENVIRONMENT: SERPENTINE PLANTS IN CALIFORNIA. Ecological Monographs, 2006, 76, 41-56.	5.4	157
5	Climate-driven diversity loss in a grassland community. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8672-8677.	7.1	118
6	Climate change effects on an endemicâ€rich edaphic flora: resurveying Robert H. Whittaker's Siskiyou sites (Oregon, USA). Ecology, 2010, 91, 3609-3619.	3.2	113
7	Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24345-24351.	7.1	113
8	Climate and plant community diversity in space and time. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4464-4470.	7.1	113
9	Resource colimitation governs plant community responses to altered precipitation. Proceedings of the United States of America, 2015, 112, 13009-13014.	7.1	104
10	Biogeographic Affinity Helps Explain Productivityâ€Richness Relationships at Regional and Local Scales. American Naturalist, 2007, 170, S5-S15.	2.1	87
11	Ecological contingency in the effects of climatic warming on forest herb communities. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19362-19367.	7.1	87
12	Endemic plant communities on special soils: early victims or hardy survivors of climate change?. Journal of Ecology, 2012, 100, 1122-1130.	4.0	85
13	Seedling traits predict drought-induced mortality linked to diversity loss. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5576-5581.	7.1	84
14	Exotic plant invasions under enhanced rainfall are constrained by soil nutrients and competition. Ecology, 2014, 95, 682-692.	3.2	64
15	Plant community diversity will decline more than increase under climatic warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190106.	4.0	61
16	Ecological effects of extreme drought on Californian herbaceous plant communities. Ecological Monographs, 2016, 86, 295-311.	5.4	59
17	INVASION IN A DIVERSITY HOTSPOT: EXOTIC COVER AND NATIVE RICHNESS IN THE CALIFORNIAN SERPENTINE FLORA. Ecology, 2006, 87, 695-703.	3.2	57
18	Historical and Ecological Controls on Phylogenetic Diversity in Californian Plant Communities. American Naturalist, 2012, 180, 257-269.	2.1	53

SUSAN P HARRISON

#	Article	IF	CITATIONS
19	PLANT DIVERSITY AND ENDEMISM IN THE CALIFORNIA FLORISTIC PROVINCE. Madro \tilde{A} ±0, 2016, 63, 3-206.	0.4	53
20	Temporal variability and nestedness in California grassland species composition. Ecology, 2009, 90, 1492-1497.	3.2	49
21	Plant communities on infertile soils are less sensitive to climate change. Annals of Botany, 2015, 116, 1017-1022.	2.9	44
22	Seed banks of native forbs, but not exotic grasses, increase during extreme drought. Ecology, 2018, 99, 896-903.	3.2	39
23	Climateâ€driven diversity change in annual grasslands: Drought plus deluge does not equal normal. Global Change Biology, 2018, 24, 1782-1792.	9.5	37
24	Towards an eco-evolutionary understanding of endemism hotspots and refugia. Annals of Botany, 2018, 122, 927-934.	2.9	33
25	Climate drives loss of phylogenetic diversity in a grassland community. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19989-19994.	7.1	29
26	Invasive species interact with climatic variability to reduce success of natives. Ecology, 2020, 101, e03022.	3.2	23
27	Above―and belowground biotic interactions facilitate relocation of plants into cooler environments. Ecology Letters, 2014, 17, 700-709.	6.4	22
28	Vulnerability and resistance in the spatial heterogeneity of soil microbial communities under resource additions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7263-7270.	7.1	22
29	Erosion of beta diversity under interacting global change impacts in a semiâ€arid grassland. Journal of Ecology, 2015, 103, 397-407.	4.0	21
30	Resourceâ€enhancing global changes drive a wholeâ€ecosystem shift to faster cycling but decrease diversity. Ecology, 2020, 101, e03178.	3.2	16
31	Directional trends in species composition over time can lead to a widespread overemphasis of yearâ€ŧoâ€year asynchrony. Journal of Vegetation Science, 2020, 31, 792-802.	2.2	15
32	Vulnerability of grassland seed banks to resourceâ€enhancing global changes. Ecology, 2021, 102, e03512.	3.2	15
33	Functional diversity is a passenger but not driver of droughtâ€related plant diversity losses in annual grasslands. Journal of Ecology, 2019, 107, 2033-2039.	4.0	12
34	Extreme preâ€fire drought decreases shrub regeneration on fertile soils. Ecological Applications, 2022, 32, e02464.	3.8	7
35	Plant community data collected by Robert H. Whittaker in the Siskiyou Mountains, Oregon and California, <scp>USA</scp> . Ecology, 2022, 103, .	3.2	5
36	LOTVS: A global collection of permanent vegetation plots. Journal of Vegetation Science, 2022, 33, .	2.2	4

#	Article	IF	CITATIONS
37	Coâ€occurrence patterns at four spatial scales implicate reproductive processes in shaping community assembly in clovers. Journal of Ecology, 2021, 109, 4056-4070.	4.0	3