Alison Roberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6116393/publications.pdf

Version: 2024-02-01

394421 501196 1,545 30 19 28 citations h-index g-index papers 32 32 32 1812 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant Journal, 2007, 50, 1118-1128.	5.7	286
2	Functional Genomic Analysis Supports Conservation of Function Among Cellulose Synthase-Like A Gene Family Members and Suggests Diverse Roles of Mannans in Plants. Plant Physiology, 2007, 143, 1881-1893.	4.8	201
3	Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex. Scientific Reports, 2016, 6, 28696.	3.3	174
4	The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens. Plant Molecular Biology, 2006, 63, 207-219.	3.9	92
5	Phylogenetically Distinct Cellulose Synthase Genes Support Secondary Wall Thickening in Arabidopsis Shoot Trichomes and Cotton Fiber. Journal of Integrative Plant Biology, 2010, 52, 205-220.	8.5	84
6	Moss cell walls: structure and biosynthesis. Frontiers in Plant Science, 2012, 3, 166.	3.6	81
7	The Glycosyltransferase Repertoire of the Spikemoss Selaginella moellendorffii and a Comparative Study of Its Cell Wall. PLoS ONE, 2012, 7, e35846.	2.5	68
8	The ability of land plants to synthesize glucuronoxylans predates the evolution of tracheophytes. Glycobiology, 2012, 22, 439-451.	2.5	63
9	Cellulose Synthase (CesA) Genes in the Green Alga Mesotaenium caldariorum. Eukaryotic Cell, 2002, 1, 847-855.	3.4	55
10	A CELLULOSE SYNTHASE (CESA) gene essential for gametophore morphogenesis in the moss Physcomitrella patens. Planta, 2012, 235, 1355-1367.	3.2	49
11	Preferred crystallographic orientation of cellulose in plant primary cell walls. Nature Communications, 2020, 11, 4720.	12.8	41
12	Functional Specialization of Cellulose Synthase Isoforms in a Moss Shows Parallels with Seed Plants. Plant Physiology, 2017, 175, 210-222.	4.8	34
13	Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens. Frontiers in Plant Science, 2016, 7, 248.	3. 6	33
14	Structure/function relationships in the rosette cellulose synthesis complex illuminated by an evolutionary perspective. Cellulose, 2019, 26, 227-247.	4.9	31
15	Cellulose synthase (CesA) genes in algae and seedless plants. Cellulose, 2004, 11, 419-435.	4.9	30
16	Knocking Out the Wall: Protocols for Gene Targeting in Physcomitrella patens. Methods in Molecular Biology, 2011, 715, 273-290.	0.9	30
17	A CELLULOSE SYNTHASE (<i>CESA</i>) GENE FROM THE RED ALGA <i>PORPHYRA YEZOENSIS</i> (RHODOPHYTA) ¹ . Journal of Phycology, 2009, 45, 203-212.	2.3	27
18	A Complementation Assay for in Vivo Protein Structure/Function Analysis inPhyscomitrella patens(Funariaceae). Applications in Plant Sciences, 2015, 3, 1500023.	2.1	24

#	Article	IF	CITATIONS
19	Cellulose synthase †class specific regions' are intrinsically disordered and functionally undifferentiated. Journal of Integrative Plant Biology, 2018, 60, 481-497.	8.5	23
20	Functional Characterization of a Glycosyltransferase from the Moss <i>Physcomitrella patens</i> Involved in the Biosynthesis of a Novel Cell Wall Arabinoglucan. Plant Cell, 2018, 30, 1293-1308.	6.6	22
21	Direct observation of the effects of cellulose synthesis inhibitors using live cell imaging of Cellulose Synthase (CESA) in Physcomitrella patens. Scientific Reports, 2018, 8, 735.	3.3	21
22	Cellulose synthase gene expression profiling of Physcomitrella patens. Plant Biology, 2016, 18, 362-368.	3.8	14
23	The valine and lysine residues in the conserved FxVTxK motif are important for the function of phylogenetically distant plant cellulose synthases. Glycobiology, 2016, 26, 509-519.	2.5	14
24	In silico structure prediction of full-length cotton cellulose synthase protein (GhCESA1) and its hierarchical complexes. Cellulose, 2020, 27, 5597-5616.	4.9	13
25	Domain swaps of Arabidopsis secondary wall cellulose synthases to elucidate their class specificity. Plant Direct, 2018, 2, e00061.	1.9	11
26	Convergent evolution of heteroâ€oligomeric cellulose synthesis complexes in mosses and seed plants. Plant Journal, 2019, 99, 862-876.	5.7	9
27	Phenotypic effects of changes in the FTVTxK region of an Arabidopsis secondary wall cellulose synthase compared with results from analogous mutations in other isoforms. Plant Direct, 2021, 5, e335.	1.9	6
28	Cellulose synthesis complexes are homo-oligomeric and hetero-oligomeric in <i>Physcomitrium patens</i> . Plant Physiology, 2022, 188, 2115-2130.	4.8	6
29	Cellulose microfibril structure: inspirations from plant diversity. IOP Conference Series: Earth and Environmental Science, 2018, 130, 012001.	0.3	0
30	Knocking Out the Wall: Revised Protocols for Gene Targeting in Physcomitrella patens. Methods in Molecular Biology, 2020, 2149, 125-144.	0.9	0