Shulin Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6115984/publications.pdf

Version: 2024-02-01

all docs

147801 149698 3,307 79 31 56 h-index citations g-index papers 81 81 81 4218 docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Genomes of Oryza sativa: A History of Duplications. PLoS Biology, 2005, 3, e38.	5.6	808
2	Thyroid Disruption by Bisphenol S Analogues via Thyroid Hormone Receptor β: <i>in Vitro</i> , <i>in Vivo</i> , and Molecular Dynamics Simulation Study. Environmental Science & Enp; Technology, 2018, 52, 6617-6625.	10.0	153
3	Interactions of benzotriazole UV stabilizers with human serum albumin: Atomic insights revealed by biosensors, spectroscopies and molecular dynamics simulations. Chemosphere, 2016, 144, 1050-1059.	8.2	127
4	Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity. Environmental Pollution, 2017, 222, 504-512.	7.5	118
5	Recent Advances on Endocrine Disrupting Effects of UV Filters. International Journal of Environmental Research and Public Health, 2016, 13, 782.	2.6	114
6	Side Chains of Parabens Modulate Antiandrogenic Activity: In Vitro and Molecular Docking Studies. Environmental Science & Envi	10.0	100
7	Development of chiral stationary phases for high-performance liquid chromatographic separation. TrAC - Trends in Analytical Chemistry, 2012, 39, 180-194.	11.4	86
8	Benzotriazole UV 328 and UV-P showed distinct antiandrogenic activity upon human CYP3A4-mediated biotransformation. Environmental Pollution, 2017, 220, 616-624.	7.5	80
9	Disruption of the Hormonal Network and the Enantioselectivity of Bifenthrin in Trophoblast: Maternal–Fetal Health Risk of Chiral Pesticides. Environmental Science & Enviro	10.0	77
10	Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosensors and Bioelectronics, 2015, 67, 662-669.	10.1	71
11	Probing the Molecular Interaction of Triazole Fungicides with Human Serum Albumin by Multispectroscopic Techniques and Molecular Modeling. Journal of Agricultural and Food Chemistry, 2013, 61, 7203-7211.	5.2	70
12	Olfactory biosensor using odorant-binding proteins from honeybee: Ligands of floral odors and pheromones detection by electrochemical impedance. Sensors and Actuators B: Chemical, 2014, 193, 420-427.	7.8	63
13	Molecular interactions of benzophenone UV filters with human serum albumin revealed by spectroscopic techniques and molecular modeling. Journal of Hazardous Materials, 2013, 263, 618-626.	12.4	62
14	Impedance sensing and molecular modeling of an olfactory biosensor based on chemosensory proteins of honeybee. Biosensors and Bioelectronics, 2013, 40, 174-179.	10.1	61
15	Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio) Tj ETQq1 1 0).784314 i	rgBT_/Overloc
16	Associations between polymorphisms of long non-coding RNA MEG3 and risk of colorectal cancer in Chinese. Oncotarget, 2016, 7, 19054-19059.	1.8	55
17	Atomic-scale investigation of the interactions between tetrabromobisphenol A, tetrabromobisphenol S and bovine trypsin by spectroscopies and molecular dynamics simulations. Journal of Hazardous Materials, 2015, 299, 486-494.	12.4	52
18	Temporal variation of oxidative potential of water soluble components of ambient PM2.5 measured by dithiothreitol (DTT) assay. Science of the Total Environment, 2019, 649, 969-978.	8.0	52

#	Article	IF	Citations
19	Atomic Insights into Distinct Hormonal Activities of Bisphenol A Analogues toward PPARÎ 3 and ERÎ $^\pm$ Receptors. Chemical Research in Toxicology, 2014, 27, 1769-1779.	3.3	51
20	Occurrence of polybrominated diphenyl ethers in indoor air and dust in Hangzhou, China: Level, role of electric appliances, and human exposure. Environmental Pollution, 2016, 218, 942-949.	7.5	45
21	Pentabromoethylbenzene Exposure Induces Transcriptome Aberration and Thyroid Dysfunction: <i>In Vitro, in Silico</i> , and <i>in Vivo</i> Investigations. Environmental Science & Environmental Science	10.0	45
22	Molecular recognition of floral volatile with two olfactory related proteins in the Eastern honeybee (Apis cerana). International Journal of Biological Macromolecules, 2013, 56, 114-121.	7.5	41
23	In silico prediction of chemical toxicity on avian species using chemical category approaches. Chemosphere, 2015, 122, 280-287.	8.2	41
24	Distinct mechanisms of endocrine disruption of DDTâ€related pesticides toward estrogen receptor α and estrogenâ€related receptor γ. Environmental Toxicology and Chemistry, 2012, 31, 2597-2605.	4.3	39
25	Inhibited Nitric Oxide Production of Human Endothelial Nitric Oxide Synthase by Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons. Environmental Science & Echnology, 2020, 54, 2922-2930.	10.0	39
26	Protein–Protein Interaction Regulates Proteins' Mechanical Stability. Journal of Molecular Biology, 2008, 378, 1132-1141.	4.2	38
27	Enantioselective Analysis and Degradation Studies of Isocarbophos in Soils by Chiral Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2012, 60, 10188-10195.	5.2	38
28	Enantioselective endocrine-disrupting effects of bifenthrin on hormone synthesis in rat ovarian cells. Toxicology, 2011, 290, 42-49.	4.2	37
29	Binding interaction between a queen pheromone component HOB and pheromone binding protein ASP1 of Apis cerana. International Journal of Biological Macromolecules, 2015, 72, 430-436.	7.5	34
30	Sorption of polycyclic aromatic hydrocarbons to soils enhanced by heavy metals: perspective of molecular interactions. Journal of Soils and Sediments, 2016, 16, 1509-1518.	3.0	34
31	In vitro and in silico investigations of the binding interactions between chlorophenols and trypsin. Journal of Hazardous Materials, 2014, 278, 55-65.	12.4	33
32	The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor \hat{l}_{\pm} , androgen receptor and thyroid hormone receptor \hat{l}^2 and aquatic toxicities towards freshwater organisms. Environmental Pollution, 2018, 240, 396-402.	7.5	30
33	Binding Specificity Determines the Cytochrome P450 3A4 Mediated Enantioselective Metabolism of Metconazole. Journal of Physical Chemistry B, 2018, 122, 1176-1184.	2.6	29
34	In silico prediction of chemical aquatic toxicity with chemical category approaches and substructural alerts. Toxicology Research, 2015, 4, 452-463.	2.1	28
35	In vitro and in silico investigations of the binary-mixture toxicity of phthalate esters and cadmium (II) to Vibrio qinghaiensis spQ67. Science of the Total Environment, 2017, 580, 1078-1084.	8.0	28
36	The Involvement of ER-stress and ROS Generation in Difenoconazole-Induced Hepatocellular Toxicity. Toxicology Research, 2015, 4, 1195-1203.	2.1	24

#	Article	IF	CITATIONS
37	Study of the inhibition of cyclin-dependent kinases with roscovitine and indirubin-3′-oxime from molecular dynamics simulations. Journal of Molecular Modeling, 2006, 13, 79-89.	1.8	22
38	Insights into unbinding mechanisms upon two mutations investigated by molecular dynamics study of $GSK3\hat{1}^2$ -axin complex: Role of packing hydrophobic residues. Proteins: Structure, Function and Bioinformatics, 2007, 67, 941-949.	2.6	22
39	Carcinogenic Risk of 2,6-Di- <i>tert</i> -Butylphenol and Its Quinone Metabolite 2,6-DTBQ Through Their Interruption of RARÎ ² : <i>In Vivo</i> , <i>In Vitro</i> , and <i>In Silico</i> Investigations. Environmental Science &	10.0	22
40	Nanoplasmonic monitoring of odorants binding to olfactory proteins from honeybee as biosensor for chemical detection. Sensors and Actuators B: Chemical, 2015, 221, 341-349.	7.8	21
41	Low Concentrations of o,p'-DDT Inhibit Gene Expression and Prostaglandin Synthesis by Estrogen Receptor-Independent Mechanism in Rat Ovarian Cells. PLoS ONE, 2012, 7, e49916.	2.5	20
42	Enantioselective determination of carboxyl acid amide fungicide mandipropamid in vegetables and fruits by chiral LC coupled with MS/MS. Journal of Separation Science, 2014, 37, 211-218.	2.5	19
43	Mechanical Design of the Third FnIII Domain of Tenascin-C. Journal of Molecular Biology, 2009, 386, 1327-1342.	4.2	18
44	Different Enantioselective Degradation of Pyraclofos in Soils. Journal of Agricultural and Food Chemistry, 2012, 60, 4173-4178.	5.2	18
45	Some Insights into the Stereochemistry of Inhibition of Macrophage Migration Inhibitory Factor with 2-Fluoro-p-hydroxycinnamate and Its Analogues from Molecular Dynamics Simulations. Journal of Medicinal Chemistry, 2005, 48, 7208-7214.	6.4	16
46	Thyroid Dysfunction of Zebrafish (<i>Danio rerio</i>) after Early-Life Exposure and Discontinued Exposure to Tetrabromobiphenyl (BB-80) and OH-BB-80. Environmental Science & Echnology, 2022, 56, 2519-2528.	10.0	16
47	Enantioselective separation and simultaneous determination of fenarimol and nuarimol in fruits, vegetables, and soil by liquid chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 404, 1983-1991.	3.7	15
48	Elucidation of the Enantioselective Enzymatic Hydrolysis of Chiral Herbicide Dichlorprop Methyl by Chemical Modification. Journal of Agricultural and Food Chemistry, 2011, 59, 1924-1930.	5.2	14
49	Engineered Bi-Histidine Metal Chelation Sites Map the Structure ofÂtheÂMechanical Unfolding Transition State of an Elastomeric ProteinÂDomain GB1. Biophysical Journal, 2012, 103, 807-816.	0.5	14
50	Enantioselective determination of acaricide etoxazole in orange pulp, peel, and whole orange by chiral liquid chromatography with tandem mass spectrometry. Journal of Separation Science, 2015, 38, 599-604.	2.5	14
51	A selectivity study on mTOR/PI3Kα inhibitors by homology modeling and 3D-QSAR. Journal of Molecular Modeling, 2012, 18, 171-186.	1.8	13
52	The molecular mechanism of the antagonistic activity of hydroxylated polybrominated biphenyl (OH-BB80) toward thyroid receptor \hat{l}^2 . Science of the Total Environment, 2019, 697, 134040.	8.0	13
53	Endothelial dysfunction and transcriptome aberration in mouse aortas induced by black phosphorus quantum dots and nanosheets. Nanoscale, 2021, 13, 9018-9030.	5.6	13
54	Triplex Blue-shifting Hydrogen Bonds of ClO ₄ ^{â€"} ···Ĥâ€"C in the Nanointerlayer of Montmorillonite Complexed with Cetyltrimethylammonium Cation from Hydrophilic to Hydrophobic Properties. Environmental Science & Description (1988) 2013, 47, 11013-11022.	10.0	12

#	Article	IF	CITATIONS
55	Enhanced Disrupting Effect of Benzophenone-1 Chlorination Byproducts to the Androgen Receptor: Cell-Based Assays and Gaussian Accelerated Molecular Dynamics Simulations. Chemical Research in Toxicology, 2021, 34, 1140-1149.	3.3	12
56	Role of phosphorylated Thr-197 in the catalytic subunit of cAMP-dependent protein kinase. Computational and Theoretical Chemistry, 2007, 805, 9-15.	1.5	11
57	Evidence for DNA-diquat interaction and cytotoxicity in in vitro rat cells. Environmental Chemistry Letters, 2012, 10, 35-39.	16.2	11
58	The fungicide difenoconazole alters mRNA expression levels of human CYP3A4 in HepG2 cells. Environmental Chemistry Letters, 2017, 15, 673-678.	16.2	11
59	Modulating the Mechanical Stability of Extracellular Matrix Protein Tenascin-C in a Controlled and Reversible Fashion. Journal of Molecular Biology, 2009, 390, 820-829.	4.2	10
60	Endothelial barrier dysfunction induced by anthracene and its nitrated or oxygenated derivatives at environmentally relevant levels. Science of the Total Environment, 2022, 802, 149793.	8.0	9
61	Phenotypic effects of Ehlers–Danlos syndromeâ€associated mutation on the FnIII domain of tenascinâ€X. Protein Science, 2010, 19, 2231-2239.	7.6	8
62	Molecular modeling revealed that ligand dissociation from thyroid hormone receptors is affected by receptor heterodimerization. Journal of Molecular Graphics and Modelling, 2013, 44, 155-160.	2.4	8
63	Characterization of toluene metabolism by methanotroph and its effect on methane oxidation. Environmental Science and Pollution Research, 2018, 25, 16816-16824.	5.3	8
64	Benzophenone-1 induced aberrant proliferation and metastasis of ovarian cancer cells via activated ERÎ \pm and Wnt/Î 2 -catenin signaling pathways. Environmental Pollution, 2022, 292, 118370.	7. 5	8
65	Metabolic Susceptibility of 2-Chlorothioxanthone and Its Toxic Effects on mRNA and Protein Expression and Activities of Human CYP1A2 and CYP3A4 Enzymes. Environmental Science & Emp; Technology, 2018, 52, 11904-11912.	10.0	7
66	Investigation of the diastereomerism of dihydrobenzoxathiin SERMs for ER alpha by molecular modeling. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7298-7305.	2.2	6
67	Dioxybenzone triggers enhanced estrogenic effect via metabolic activation: in silico, inÂvitro and inÂvivo investigation. Environmental Pollution, 2021, 268, 115766.	7.5	6
68	Fluorescence Investigation on the Interaction of a Prevalent Competitive Fluorescent Probe with Entomic Odorant Binding Protein. Spectroscopy Letters, 2013, 46, 527-534.	1.0	5
69	2,6-Di-tert-butylphenol and its quinone metabolite trigger aberrant transcriptional responses in C57BL/6 mice liver. Science of the Total Environment, 2021, 778, 146322.	8.0	5
70	A Dominant form of Congenital Stationary Night Blindness (adCSNB) in a Large Chinese Family. Annals of Human Genetics, 2005, 69, 315-321.	0.8	4
71	Natural sunlight-driven aquatic toxicity enhancement of 2,6-di-tert-butylphenol toward Photobacterium phosphoreum. Environmental Pollution, 2019, 251, 66-71.	7.5	4
72	Sulforaphane inhibits CYP1A1 activity and promotes genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro. Toxicology and Applied Pharmacology, 2013, 269, 226-232.	2.8	3

#	Article	IF	CITATIONS
73	Transcriptome aberration in mice uterus associated with steroid hormone response and inflammation induced by dioxybenzone and its metabolites. Environmental Pollution, 2021, 286, 117294.	7.5	3
74	A Dominant form of Congenital Stationary Night Blindness (adCSNB) in a Large Chinese Family. Annals of Human Genetics, 2005, 69, 315-321.	0.8	3
75	A study of the interaction of cinnamate analogues with macrophage migration inhibitory factor (MIF) and P1G mutant from molecular dynamics simulations. Computational and Theoretical Chemistry, 2006, 763, 97-101.	1.5	2
76	Investigation of the binding specificity of Erbin-PDZ affinity clamp by molecular dynamics simulations. Computational and Theoretical Chemistry, 2011, 963, 448-452.	2.5	2
77	Functional role of three water molecules buried within catalytic subunit of cyclic 3′,5′-adenosine monophosphate-dependent protein kinase. Computational and Theoretical Chemistry, 2007, 809, 21-27.	1.5	1
78	Single Molecule Force Spectroscopy and Steered Molecular Dynamics Simulations Reveal the Mechanical Design of the Third FnIII Domain of Tenascin-C. Biophysical Journal, 2009, 96, 641a.	0.5	0
79	Modulating the Mechanical Stability of Extracellular Matrix Protein Tenascin-C in a Controlled and Reversible Fashion. Biophysical Journal, 2010, 98, 595a.	0.5	0