

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6115896/publications.pdf Version: 2024-02-01

26630	20358
1 56	116
h-inde	ex g-index
12	2 11087
ons times ra	anked citing authors
	l 56 h-inde 12 ons times ra

RINLI

#	Article	IF	CITATIONS
1	Metal–Organic Frameworks as Platforms for Functional Materials. Accounts of Chemical Research, 2016, 49, 483-493.	15.6	1,403
2	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	21.0	1,227
3	Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353, 141-144.	12.6	1,088
4	Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. Journal of the American Chemical Society, 2016, 138, 5897-5903.	13.7	613
5	Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why?. Journal of Physical Chemistry Letters, 2014, 5, 3468-3479.	4.6	505
6	Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chemical Society Reviews, 2014, 43, 5618-5656.	38.1	476
7	Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material. Journal of the American Chemical Society, 2017, 139, 8022-8028.	13.7	417
8	Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nature Communications, 2015, 6, 7328.	12.8	404
9	A Flexible Microporous Hydrogen-Bonded Organic Framework for Gas Sorption and Separation. Journal of the American Chemical Society, 2015, 137, 9963-9970.	13.7	360
10	A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 2014, 136, 6207-6210.	13.7	311
11	An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. Advanced Materials, 2017, 29, 1704210.	21.0	310
12	Porous Metal-Organic Frameworks: Promising Materials for Methane Storage. CheM, 2016, 1, 557-580.	11.7	297
13	Flexible–Robust Metal–Organic Framework for Efficient Removal of Propyne from Propylene. Journal of the American Chemical Society, 2017, 139, 7733-7736.	13.7	242
14	A Chemically Stable Hofmannâ€Type Metalâ^'Organic Framework with Sandwichâ€Like Binding Sites for Benchmark Acetylene Capture. Advanced Materials, 2020, 32, e1908275.	21.0	236
15	Luminescence vapochromism in solid materials based on metal complexes for detection of volatile organic compounds (VOCs). Journal of Materials Chemistry, 2012, 22, 11427.	6.7	215
16	Porous metal–organic frameworks for fuel storage. Coordination Chemistry Reviews, 2018, 373, 167-198.	18.8	211
17	Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information Anticounterfeiting. Angewandte Chemie - International Edition, 2019, 58, 18025-18031.	13.8	205
18	Microporous Metal–Organic Frameworks for Gas Separation. Chemistry - an Asian Journal, 2014, 9, 1474-1498.	3.3	183

#	Article	IF	CITATIONS
19	Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework. Journal of the American Chemical Society, 2020, 142, 633-640.	13.7	183
20	Multifunctional lanthanide coordination polymers. Progress in Polymer Science, 2015, 48, 40-84.	24.7	176
21	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie - International Edition, 2021, 60, 15995-16002.	13.8	148
22	Finely tuning MOFs towards high performance in C ₂ H ₂ storage: synthesis and properties of a new MOF-505 analogue with an inserted amide functional group. Chemical Communications, 2016, 52, 7241-7244.	4.1	131
23	Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture. Journal of the American Chemical Society, 2022, 144, 2614-2623.	13.7	127
24	Porous metal–organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. Energy and Environmental Science, 2015, 8, 2504-2511.	30.8	126
25	Our journey of developing multifunctional metal-organic frameworks. Coordination Chemistry Reviews, 2019, 384, 21-36.	18.8	126
26	A Microporous Metal–Organic Framework with Lewis Basic Nitrogen Sites for High C ₂ H ₂ Storage and Significantly Enhanced C ₂ H ₂ /CO ₂ Separation at Ambient Conditions. Inorganic Chemistry, 2016, 55, 7214-7218.	4.0	124
27	A Metal–Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. Angewandte Chemie - International Edition, 2018, 57, 15183-15188.	13.8	124
28	Confinement of Perovskiteâ€QDs within a Single MOF Crystal for Significantly Enhanced Multiphoton Excited Luminescence. Advanced Materials, 2019, 31, e1806897.	21.0	124
29	Engineering microporous ethane-trapping metal–organic frameworks for boosting ethane/ethylene separation. Journal of Materials Chemistry A, 2020, 8, 3613-3620.	10.3	120
30	Dense Packing of Acetylene in a Stable and Lowâ€Cost Metal–Organic Framework for Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 25068-25074.	13.8	116
31	A Microporous Porphyrin-Based Hydrogen-Bonded Organic Framework for Gas Separation. Crystal Growth and Design, 2015, 15, 2000-2004.	3.0	115
32	A Metal–Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities. Advanced Materials, 2018, 30, e1704792.	21.0	109
33	A Rodâ€Packing Hydrogenâ€Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angewandte Chemie - International Edition, 2021, 60, 10304-10310.	13.8	104
34	Enhanced CO ₂ sorption and selectivity by functionalization of a NbO-type metal–organic framework with polarized benzothiadiazole moieties. Chemical Communications, 2014, 50, 12105-12108.	4.1	103
35	A Metal–Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. Angewandte Chemie, 2018, 130, 15403-15408.	2.0	98
36	Control of interpenetration in a microporous metal–organic framework for significantly enhanced C ₂ H ₂ /CO ₂ separation at room temperature. Chemical Communications, 2016, 52, 3494-3496.	4.1	94

Βιν Li

#	Article	IF	CITATIONS
37	Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities. Chemical Communications, 2017, 53, 11150-11153.	4.1	93
38	Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal–organic framework. Journal of Materials Chemistry A, 2017, 5, 18984-18988.	10.3	88
39	Flexible Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes: A New Platform for H ₂ S Sensors. Small, 2018, 14, e1801563.	10.0	88
40	Boosting Ethylene/Ethane Separation within Copper(I)â€Chelated Metal–Organic Frameworks through Tailorâ€Made Aperture and Specific π omplexation. Advanced Science, 2020, 7, 1901918.	11.2	86
41	Redox-Modulated Stepwise Photochromism in a Ruthenium Complex with Dual Dithienylethene-Acetylides. Journal of the American Chemical Society, 2012, 134, 16059-16067.	13.7	85
42	Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations. Materials Today, 2016, 19, 503-515.	14.2	82
43	Luminescence Vapochromism of a Platinum(II) Complex for Detection of Low Molecular Weight Halohydrocarbon. Inorganic Chemistry, 2009, 48, 10202-10210.	4.0	81
44	A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. Journal of Materials Chemistry A, 2017, 5, 8292-8296.	10.3	78
45	Controlling Pore Shape and Size of Interpenetrated Anion-Pillared Ultramicroporous Materials Enables Molecular Sieving of CO ₂ Combined with Ultrahigh Uptake Capacity. ACS Applied Materials & Interfaces, 2018, 10, 16628-16635.	8.0	78
46	Nanospace within metal–organic frameworks for gas storage and separation. Materials Today Nano, 2018, 2, 21-49.	4.6	77
47	A new low-cost and effective method for enhancing the catalytic performance of Cu–SiO 2 catalysts for the synthesis of ethylene glycol via the vapor-phase hydrogenation of dimethyl oxalate by coating the catalysts with dextrin. Journal of Catalysis, 2017, 350, 122-132.	6.2	74
48	Fine-tuning of nano-traps in a stable metal–organic framework for highly efficient removal of propyne from propylene. Journal of Materials Chemistry A, 2018, 6, 6931-6937.	10.3	74
49	Microporous Lanthanide Metal–Organic Framework Constructed from Lanthanide Metalloligand for Selective Separation of C ₂ H ₂ /CO ₂ and C ₂ H ₂ /CH ₄ at Room Temperature. Inorganic Chemistry, 2017, 56, 7145-7150	4.0	72
50	Robust and Radiation-Resistant Hofmann-Type Metal–Organic Frameworks for Record Xenon/Krypton Separation. Journal of the American Chemical Society, 2022, 144, 3200-3209.	13.7	71
51	High acetylene/ethylene separation in a microporous zinc(<scp>ii</scp>) metal–organic framework with low binding energy. Chemical Communications, 2016, 52, 1166-1169.	4.1	67
52	Electrochemical detection of trace heavy metal ions using a Ln-MOF modified glass carbon electrode. Journal of Solid State Chemistry, 2020, 281, 121032.	2.9	64
53	Efficient separation of C ₂ H ₂ from C ₂ H ₂ /CO ₂ mixtures in an acid–base resistant metal–organic framework. Chemical Communications, 2018, 54, 4846-4849.	4.1	62
54	Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information Anticounterfeiting. Angewandte Chemie, 2019, 131, 18193-18199.	2.0	62

#	Article	IF	CITATIONS
55	A microporous metal–organic framework with rare lvt topology for highly selective C ₂ H ₂ /C ₂ H ₄ separation at room temperature. Chemical Communications, 2015, 51, 5610-5613.	4.1	61
56	Nanoscale fluorescent metal–organic framework composites as a logic platform for potential diagnosis of asthma. Biosensors and Bioelectronics, 2019, 130, 65-72.	10.1	60
57	A Microporous Metal–Organic Framework Constructed from a New Tetracarboxylic Acid for Selective Gas Separation. Crystal Growth and Design, 2014, 14, 2522-2526.	3.0	58
58	A novel anion-pillared metal–organic framework for highly efficient separation of acetylene from ethylene and carbon dioxide. Journal of Materials Chemistry A, 2021, 9, 9248-9255.	10.3	55
59	Highly stable Y(<scp>iii</scp>)-based metal organic framework with two molecular building block for selective adsorption of C ₂ H ₂ and CO ₂ over CH ₄ . Inorganic Chemistry Frontiers, 2018, 5, 1193-1198.	6.0	51
60	A zirconium-based metal-organic framework with encapsulated anionic drug for uncommonly controlled oral drug delivery. Microporous and Mesoporous Materials, 2019, 275, 229-234.	4.4	47
61	Low-Cost and High-Performance Microporous Metal–Organic Framework for Separation of Acetylene from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2019, 7, 1667-1672.	6.7	47
62	Reversing C ₂ H ₂ –CO ₂ adsorption selectivity in an ultramicroporous metal–organic framework platform. Chemical Communications, 2019, 55, 11354-11357.	4.1	46
63	A Novel Hydrogen-Bonded Organic Framework with Highly Permanent Porosity for Boosting Ethane/Ethylene Separation. , 2021, 3, 497-503.		46
64	Gold(I)-Coordination Triggered Multistep and Multiple Photochromic Reactions in Multi-Dithienylethene (DTE) Systems. Inorganic Chemistry, 2012, 51, 1933-1942.	4.0	43
65	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie, 2021, 133, 16131-16138.	2.0	43
66	A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules. Science China Materials, 2019, 62, 1315-1322.	6.3	41
67	A porous metal–organic framework with an elongated anthracene derivative exhibiting a high working capacity for the storage of methane. Journal of Materials Chemistry A, 2014, 2, 11516.	10.3	40
68	A microporous metal–organic framework with polarized trifluoromethyl groups for high methane storage. Chemical Communications, 2015, 51, 14789-14792.	4.1	40
69	Highly selective room temperature acetylene sorption by an unusual triacetylenic phosphine MOF. Chemical Communications, 2018, 54, 9937-9940.	4.1	40
70	A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection. Journal of Solid State Chemistry, 2019, 275, 38-42.	2.9	38
71	A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid. Journal of Molecular Structure, 2020, 1209, 127986.	3.6	38
72	A Fluorinated Metal–Organic Framework for High Methane Storage at Room Temperature. Crystal Growth and Design, 2016, 16, 3395-3399.	3.0	36

#	Article	IF	CITATIONS
73	Fine-Tuning Porous Metal-Organic Frameworks for Gas Separations at Will. CheM, 2016, 1, 669-671.	11.7	35
74	Chemically Stable Hafnium-Based Metal–Organic Framework for Highly Efficient C ₂ H ₆ /C ₂ H ₄ Separation under Humid Conditions. ACS Applied Materials & Interfaces, 2021, 13, 18792-18799.	8.0	34
75	A reversible vapor-responsive fluorochromic molecular platform based on coupled AIE–ESIPT mechanisms and its applications in anti-counterfeiting measures. Dyes and Pigments, 2020, 181, 108535.	3.7	33
76	A Twofold Interpenetrated Metal–Organic Framework with High Performance in Selective Separation of C ₂ H ₂ /CH ₄ . ChemPlusChem, 2016, 81, 770-774.	2.8	31
77	Metal-organic framework film for fluorescence turn-on H2S gas sensing and anti-counterfeiting patterns. Science China Materials, 2019, 62, 1445-1453.	6.3	31
78	Current Status of Microporous Metal–Organic Frameworks for Hydrocarbon Separations. Topics in Current Chemistry, 2019, 377, 33.	5.8	31
79	Regulation of Charge Delocalization in a Heteronuclear Fe ₂ Ru System by a Stepwise Photochromic Process. Chemistry - A European Journal, 2015, 21, 3318-3326.	3.3	30
80	A flexible metal-organic framework with double interpenetration for highly selective CO2 capture at room temperature. Science China Chemistry, 2016, 59, 965-969.	8.2	30
81	A Rodâ€Packing Hydrogenâ€Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angewandte Chemie, 2021, 133, 10392-10398.	2.0	29
82	A two-dimensional microporous metal–organic framework for highly selective adsorption of carbon dioxide and acetylene. Chinese Chemical Letters, 2017, 28, 1653-1658.	9.0	27
83	Post-modified metal-organic framework as a turn-on fluorescent probe for potential diagnosis of neurological diseases. Microporous and Mesoporous Materials, 2019, 288, 109610.	4.4	27
84	Highly Enhanced Gas Uptake and Selectivity via Incorporating Methoxy Groups into a Microporous Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2172-2177.	3.0	26
85	Metal–Organic Framework with Trifluoromethyl Groups for Selective C ₂ H ₂ and CO ₂ Adsorption. Crystal Growth and Design, 2018, 18, 4522-4527.	3.0	26
86	Modulating Stepwise Photochromism in Platinum(II) Complexes with Dual Dithienylethene–Acetylides by a Progressive Red Shift of Ring-Closure Absorption. Inorganic Chemistry, 2013, 52, 12511-12520.	4.0	24
87	Multistate and Multicolor Photochromism through Selective Cycloreversion in Asymmetric Platinum(II) Complexes with Two Different Dithienylethene–Acetylides. Inorganic Chemistry, 2015, 54, 11511-11519.	4.0	24
88	A Threefold Interpenetrated Pillared‣ayer Metal–Organic Framework for Selective Separation of C ₂ H ₂ /CH ₄ and CO ₂ /CH ₄ . ChemPlusChem, 2016, 81, 764-769.	2.8	24
89	Reticular Chemistry of Multifunctional Metalâ€Organic Framework Materials. Israel Journal of Chemistry, 2018, 58, 949-961.	2.3	24
90	A new metal-organic framework with suitable pore size and ttd-type topology revealing highly selective adsorption and separation of organic dyes. Journal of Solid State Chemistry, 2019, 277, 159-162.	2.9	22

#	Article	IF	CITATIONS
91	Tuning the interpenetration of metal–organic frameworks through changing ligand functionality: effect on gas adsorption properties. CrystEngComm, 2020, 22, 506-514.	2.6	22
92	Low-valence oxo-centred triruthenium complexes by bridging acetate substitution with pyrazolyldiazine or pyridinyltetrazine ligands. Dalton Transactions, 2009, , 8696.	3.3	20
93	Multistate Photochromism in a Ruthenium Complex with Dithienylethene–Acetylide. Organometallics, 2013, 32, 1759-1765.	2.3	20
94	Efficient CO ₂ /CO separation in a stable microporous hydrogen-bonded organic framework. Chemical Communications, 2021, 57, 10051-10054.	4.1	20
95	W-shaped 1,3-di(2,4-dicarboxyphenyl)benzene based lanthanide coordination polymers with tunable white light emission. New Journal of Chemistry, 2016, 40, 10440-10446.	2.8	18
96	Immobilization of Lewis Basic Nitrogen Sites into a Chemically Stable Metal–Organic Framework for Benchmark Waterâ€Sorptionâ€Driven Heat Allocations. Advanced Science, 2022, 9, e2105556.	11.2	17
97	Porous Lanthanide Metal–Organic Frameworks for Gas Storage and Separation. Structure and Bonding, 2014, , 75-107.	1.0	15
98	Solventâ€Triggered Reversible Phase Changes in Two Manganeseâ€Based Metal–Organic Frameworks and Associated Sensing Events. Chemistry - A European Journal, 2018, 24, 13231-13237.	3.3	15
99	An inner light integrated metal-organic framework photodynamic therapy system for effective elimination of deep-seated tumor cells. Journal of Solid State Chemistry, 2019, 276, 205-209.	2.9	15
100	Switchable Twoâ€Photon Pumped Polarized Lasing Performance in Compositionâ€Graded MOFs Based Heterostructures. Advanced Optical Materials, 2020, 8, 2001089.	7.3	15
101	A Robust Hydrogen-Bonded Organic Framework with 7-Fold Interpenetration Nets and High Permanent Microporosity. Crystal Growth and Design, 2022, 22, 1817-1823.	3.0	15
102	Progress in Multifunctional Metal–Organic Frameworks/Polymer Hybrid Membranes. Chemistry - A European Journal, 2021, 27, 12940-12952.	3.3	14
103	Dense Packing of Acetylene in a Stable and Lowâ€Cost Metal–Organic Framework for Efficient C2H2/CO2 Separation. Angewandte Chemie, 0, , .	2.0	14
104	Construction of ntt-Type Metal–Organic Framework from <i>C</i> ₂ -Symmetry Hexacarboxylate Linker for Enhanced Methane Storage. Crystal Growth and Design, 2017, 17, 4795-4800.	3.0	13
105	A novel metal-organic framework as a heterogeneous catalysis for the solvent-free conversion of CO2 and epoxides into cyclic carbonate. Inorganic Chemistry Communication, 2018, 88, 56-59.	3.9	13
106	Tailoring the pore geometry and chemistry in microporous metal–organic frameworks for high methane storage working capacity. Chemical Communications, 2019, 55, 11402-11405.	4.1	13
107	Polarized Laser Switching with Giant Contrast in MOFâ€Based Mixedâ€Matrix Membrane. Advanced Science, 2022, 9, e2200953.	11.2	12
108	Spectroscopic, Electrochemical, and DFT Studies of Oxo-Centered Triruthenium Cluster Complexes with a Bis(tridentate) Triazine Ligand. European Journal of Inorganic Chemistry, 2011, 2011, 2306-2316.	2.0	11

#	Article	IF	CITATIONS
109	A two dimensional microporous metal-organic framework for selective gas separation. Inorganic Chemistry Communication, 2014, 50, 106-109.	3.9	10
110	A novel expanded metal–organic framework for balancing volumetric and gravimetric methane storage working capacities. Chemical Communications, 2020, 56, 13117-13120.	4.1	9
111	Phosphorescent Square-Planar Platinum(II) Complexes of 1,3-Bis(2-pyridylimino)isoindoline with a Monodentate Strong-Field Ligand. European Journal of Inorganic Chemistry, 2013, 2013, 4789-4798.	2.0	8
112	Photochromic and electrochromic properties of oxo-centred triruthenium compounds with a dithienylethene bis(phosphine) ligand. Dalton Transactions, 2009, , 10244.	3.3	7
113	Microporous metal–organic framework with open Cu2+ functional sites and optimized pore size for C2H2 storage and CH4 purification. Polyhedron, 2018, 155, 332-336.	2.2	7
114	Photoswitchable electrochemical behaviour of a [FeFe] hydrogenase model with a dithienylethene derivative. Dalton Transactions, 2012, 41, 11813.	3.3	6
115	Syntheses, structures, luminescence and CO2 gas adsorption properties of four three-dimensional heterobimetallic metal–organic frameworks. Journal of Solid State Chemistry, 2022, 305, 122672.	2.9	6
116	Negative-resistance and high-mobility devices based on paper. Materials Express, 2017, 7, 5-14.	0.5	2
117	Two structurally different praseodymium-organic frameworks with permanent porosity. Inorganic Chemistry Communication, 2014, 45, 89-92.	3.9	1